Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 12: 679388, 2021.
Article in English | MEDLINE | ID: mdl-34712131

ABSTRACT

Introduction: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease with a poor prognosis and increasing incidence. Pirfenidone and nintedanib are the only approved treatments for IPF but have limited efficacy and their mechanisms of action are poorly understood. Here we have examined the effects of pirfenidone and nintedanib in a human model of lung fibrogenesis, and compared these with the putative anti-fibrotic compounds Lipoxin A4 (LXA4), and senicapoc, a KCa3.1 ion channel blocker. Methods: Early fibrosis was induced in cultured human lung parenchyma using TGFß1 for 7 days, ± pirfenidone, nintedanib, or LXA4. Pro-fibrotic responses were examined by RT-PCR, immunohistochemistry and soluble collagen secretion. Results: Thirty six out of eighty four IPF and fibrosis-associated genes tested were significantly upregulated by TGFß1 in human lung parenchyma with a ≥0.5 log2FC (n = 32). Nintedanib (n = 13) reduced the mRNA expression of 14 fibrosis-associated genes including MMPs (MMP1,-4,-13,-14), integrin α2, CXCR4 and PDGFB, but upregulated α-smooth muscle actin (αSMA). Pirfenidone only reduced mRNA expression for MMP3 and -13. Senicapoc (n = 11) previously attenuated the expression of 28 fibrosis-associated genes, including αSMA, several growth factors, collagen type III, and αV/ß6 integrins. Pirfenidone and nintedanib significantly inhibited TGFß1-induced fibroblast proliferation within the tissue, but unlike senicapoc, neither pirfenidone nor nintedanib prevented increases in tissue αSMA expression. LXA4 was ineffective. Conclusions: Pirfenidone and nintedanib demonstrate modest anti-fibrotic effects and provide a benchmark for anti-fibrotic activity of new drugs in human lung tissue. Based on these data, we predict that the KCa3.1 blocker senicapoc will show greater benefit than either of these licensed drugs in IPF.

2.
Sci Rep ; 9(1): 18500, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811235

ABSTRACT

The transient receptor potential cation channel family member ankyrin 1 (TRPA1) is a potential target for several diseases, but detection of human TRPA1 (hTRPA1) protein in cells and tissues is problematic as rigorous antibody validation is lacking. We expressed hTRPA1 in a TRPA1-negative cell line to evaluate 5 commercially available antibodies by western blotting, immunofluorescence, immunocytochemistry and flow cytometry. The three most cited anti-TRPA1 antibodies lacked sensitivity and/or specificity, but two mouse monoclonal anti-TRPA1 antibodies detected hTRPA1 specifically in the above assays. This enabled the development of a flow cytometry assay, which demonstrated strong expression of TRPA1 in human lung myofibroblasts, human airway smooth muscle cells but not lung mast cells. The most cited anti-TRPA1 antibodies lack sensitivity and/or specificity for hTRPA1. We have identified two anti-TRPA1 antibodies which detect hTRPA1 specifically. Previously published data regarding human TRPA1 protein expression may need revisiting.


Subject(s)
Antibodies/chemistry , Myocytes, Smooth Muscle/metabolism , Myofibroblasts/metabolism , TRPA1 Cation Channel/metabolism , Calcium/metabolism , Calcium Signaling , Epitopes/chemistry , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immunohistochemistry , Lung/cytology , Microscopy, Fluorescence
3.
Allergy ; 72(4): 645-655, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27709630

ABSTRACT

BACKGROUND: The role of fibrocytes in chronic obstructive pulmonary disease (COPD) is unknown. We sought to enumerate blood and tissue fibrocytes in COPD and determine the association of blood fibrocytes with clinical features of disease. METHODS: Utilizing flow cytometry to identify circulating, collagen type 1+ cells, we found two populations: (i) CD45+ CD34+ (fibrocytes) and (ii) CD45+ CD34- [myeloid-derived suppressor cell (MDSC)-like fibrocytes] cells in stable COPD (n = 41) and control (n = 29) subjects. Lung resection material from a separate group of subjects with (n = 11) or without (n = 11) COPD was collected for tissue fibrocyte detection. We examined circulating fibrocyte populations for correlations with clinical parameters including quantitative computed tomography (qCT) and determined pathways of association between correlated variables using a path analysis model. RESULTS: Blood and tissue fibrocytes were not increased compared to control subjects nor were blood fibrocytes associated with lung function or qCT, but were increased in eosinophilic COPD. Myeloid-derived suppressor cell-like fibrocytes were increased in COPD compared to controls [2.3 (1.1-4.9), P = 0.038]. Our path analysis model showed that collagen type 1 intensity for MDSC-like fibrocytes was positively associated with lung function through associations with air trapping, predominately in the upper lobes. CONCLUSION: We have demonstrated that two circulating populations of fibrocyte exist in COPD, with distinct clinical associations, but are not prevalent in proximal or small airway tissue. Blood MDSC-like fibrocytes, however, are increased and associated with preserved lung function through a small airway-dependent mechanism in COPD.


Subject(s)
Fibroblasts/pathology , Myeloid-Derived Suppressor Cells/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Biomarkers , Case-Control Studies , Cell Count , Cell Differentiation , Female , Fibroblasts/metabolism , Flow Cytometry , Humans , Immunophenotyping , Male , Middle Aged , Myeloid-Derived Suppressor Cells/metabolism , Phenotype , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Respiratory Function Tests , Severity of Illness Index , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL