Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405907

ABSTRACT

Replication-incompetent single cycle infectious Influenza A Virus (sciIAV) has demonstrated utility as a research and vaccination platform. Protein-based therapeutics are increasingly attractive due to their high selectivity and potent efficacy but still suffer from low bioavailability and high manufacturing cost. Transient RNA-mediated delivery is a safe alternative that allows for expression of protein-based therapeutics within the target cells or tissues but is limited by delivery efficiency. Here, we develop recombinant sciIAV as a platform for transient gene delivery in vivo and in vitro for therapeutic, research, and manufacturing applications (in vivo antimicrobial production, cell culture contamination clearance, and production of antiviral proteins in vitro). While adapting the system to deliver new protein cargo we discovered expression differences presumably resulting from genetic context effects. We applied a high-throughput screen to map these within the 3'-untranslated and coding regions of the hemagglutinin-encoding segment 4. This screen revealed permissible mutations in the 3'-UTR and depletion of RNA level motifs in the N-terminal coding region.

2.
mSphere ; 9(2): e0065423, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38286428

ABSTRACT

Specific pathogen-free (SPF) laboratory mice dominate preclinical studies for immunology and vaccinology. Unfortunately, SPF mice often fail to accurately model human responses to vaccination and other immunological perturbations. Several groups have taken different approaches to introduce additional microbial experience to SPF mice to better model human immune experience. How these different models compare is unknown. Here, we directly compare three models: housing SPF mice in a microbe-rich barn-like environment (feralizing), adding wild-caught mice to the barn-like environment (fer-cohoused), or cohousing SPF mice with pet store mice in a barrier facility (pet-cohoused); the two latter representing different murine sources of microbial transmission. Pet-cohousing mice resulted in the greatest microbial exposure. Feralizing alone did not result in the transmission of any pathogens tested, while fer-cohousing resulted in the transmission of several picornaviruses. Murine astrovirus 2, the most common pathogen from pet store mice, was absent from the other two model systems. Previously, we had shown that pet-cohousing reduced the antibody response to vaccination compared with SPF mice. This was not recapitulated in either the feralized or fer-cohoused mice. These data indicate that not all dirty mouse models are equivalent in either microbial experience or immune responses to vaccination. These disparities suggest that more cross model comparisons are needed but also represent opportunities to uncover microbe combination-specific phenotypes and develop more refined experimental models. Given the breadth of microbes encountered by humans across the globe, multiple model systems may be needed to accurately recapitulate heterogenous human immune responses.IMPORTANCEAnimal models are an essential tool for evaluating clinical interventions. Unfortunately, they can often fail to accurately predict outcomes when translated into humans. This failure is due in part to a lack of natural infections experienced by most laboratory animals. To improve the mouse model, we and others have exposed laboratory mice to microbes they would experience in the wild. Although these models have been growing in popularity, these different models have not been specifically compared. Here, we directly compare how three different models of microbial experience impact the immune response to influenza vaccination. We find that these models are not the same and that the degree of microbial exposure affects the magnitude of the response to vaccination. These results provide an opportunity for the field to continue comparing and contrasting these systems to determine which models best recapitulate different aspects of the human condition.


Subject(s)
Immunity , Vaccination , Animals , Mice , Humans , Disease Models, Animal , Specific Pathogen-Free Organisms
3.
J Virol ; 96(9): e0035222, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35446142

ABSTRACT

Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.


Subject(s)
Enteritis , Influenza A virus , Intestine, Small , Orthomyxoviridae Infections , Animals , Enteritis/immunology , Enteritis/physiopathology , Enteritis/virology , Humans , Immunity, Innate , Influenza A virus/immunology , Intestine, Small/cytology , Intestine, Small/virology , Lymphocytes/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/physiopathology , Orthomyxoviridae Infections/virology
4.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34958350

ABSTRACT

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Subject(s)
Disease Models, Animal , Disease Susceptibility , Virus Diseases/etiology , Virus Diseases/transmission , Animal Diseases/transmission , Animal Diseases/virology , Animals , Biomarkers , Host-Pathogen Interactions , Humans , Interferons/metabolism , Mice , Mice, Knockout , Microbial Interactions , Rodentia , Virus Diseases/metabolism
5.
Viruses ; 13(6)2021 06 11.
Article in English | MEDLINE | ID: mdl-34208242

ABSTRACT

Astroviruses are non-enveloped, single-stranded RNA viruses that infect mammalian and avian species. In humans, astrovirus infections are one of the most common causes of gastroenteritis in children. Infection has also been linked to serious neurological complications, especially in immunocompromised individuals. More extensive disease has also been characterized in non-human mammalian and avian species. To date, astroviruses have been detected in over 80 different avian and mammalian hosts. As the number of hosts continues to rise, the need to understand how astroviruses transmit within a given species as well as to new host species becomes increasingly important. Here, we review the current understanding of astrovirus transmission, the factors that influence viral spread, and the potential for cross-species transmission. Additionally, we highlight the current gaps in knowledge and areas of future research that will be key to understanding astrovirus transmission and zoonotic potential.


Subject(s)
Astroviridae Infections/transmission , Astroviridae/pathogenicity , Animals , Astroviridae/classification , Astroviridae/genetics , Astroviridae Infections/complications , Astroviridae Infections/virology , Birds/virology , Gastroenteritis/virology , Host Specificity , Humans , Phylogeny , Viral Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...