Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Bioenerg ; 1864(2): 148948, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36481274

ABSTRACT

Staphylococcus aureus is an opportunistic pathogen and one of the most frequent causes for community acquired and nosocomial bacterial infections. Even so, its energy metabolism is still under explored and its respiratory enzymes have been vastly overlooked. In this work, we unveil the dihydroorotate:quinone oxidoreductase (DHOQO) from S. aureus, the first example of a DHOQO from a Gram-positive organism. This protein was shown to be a FMN containing menaquinone reducing enzyme, presenting a Michaelis-Menten behaviour towards the two substrates, which was inhibited by Brequinar, Leflunomide, Lapachol, HQNO, Atovaquone and TFFA with different degrees of effectiveness. Deletion of the DHOQO coding gene (Δdhoqo) led to lower bacterial growth rates, and effected in cell morphology and metabolism, most importantly in the pyrimidine biosynthesis, here systematized for S. aureus MW2 for the first time. This work unveils the existence of a functional DHOQO in the respiratory chain of the pathogenic bacterium S. aureus, enlarging the understanding of its energy metabolism.


Subject(s)
Quinones , Staphylococcus aureus , Atovaquone , Electron Transport , Quinones/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Quinone Reductases/metabolism
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293142

ABSTRACT

Cancer-related opportunistic bacterial infections are one major barrier for successful clinical therapies, often correlated to the production of genotoxic factors and higher cancer incidence. Although dual anticancer and antimicrobial therapies are a growing therapeutic fashion, they still fall short when it comes to specific delivery and local action in in vivo systems. Nanoparticles are seen as potential therapeutic vectors, be it by means of their intrinsic antibacterial properties and effective delivery capacity, or by means of their repeatedly reported modulation and maneuverability. Herein we report on the production of a biocompatible, antimicrobial magneto-fluorescent nanosystem (NANO3) for the delivery of a dual doxorubicin-ofloxacin formulation against cancer-related bacterial infections. The drug delivery capacity, rendered by its mesoporous silica matrix, is confirmed by the high loading capacity and stimuli-driven release of both drugs, with preference for tumor-like acidic media. The pH-dependent emission of its surface fluorescent SiQDs, provides an insight into NANO3 surface behavior and pore availability, with the SiQDs working as pore gates. Hyperthermia induces heat generation to febrile temperatures, doubling drug release. NANO3-loaded systems demonstrate significant antimicrobial activity, specifically after the application of hyperthermia conditions. NANO3 structure and antimicrobial properties confirm their potential use in a future dual anticancer and antimicrobial therapeutical vector, due to their drug loading capacity and their surface availability for further modification with bioactive, targeting species.


Subject(s)
Anti-Infective Agents , Colorectal Neoplasms , Hyperthermia, Induced , Nanoparticles , Humans , Drug Carriers/chemistry , Ofloxacin , Porosity , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Drug Liberation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Delivery Systems
3.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683726

ABSTRACT

Magnetite nanoparticles were synthesized by the co-precipitation method with and without the assistance of an additive, namely, gelatin, agar-agar or pectin, using eco-friendly conditions and materials embodying a green synthesis process. X-ray diffraction and transmission electron microscopy were used to analyze the structure and morphology of the nanoparticles. Magnetic properties were investigated by SQUID magnetometry and 57Fe Mössbauer spectroscopy. The results show that the presence of the additives implies a higher reproducibility of the morphological magnetic nanoparticle characteristics compared with synthesis without any additive, with small differences associated with different additives. To assess their potential for magnetic hyperthermia, water-based suspensions of these nanoparticles were prepared with and without citric acid. The stable solutions obtained were studied for their structural, magnetic and heating efficiency properties. The results indicate that the best additive for the stabilization of a water-based emulsion and better heating efficiency is pectin or a combination of pectin and agar-agar, attaining an intrinsic loss power of 3.6 nWg-1.

4.
J Fungi (Basel) ; 8(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35205858

ABSTRACT

Acetic acid is a major inhibitory compound in several industrial bioprocesses, in particular in lignocellulosic yeast biorefineries. Cell envelope remodeling, involving cell wall and plasma membrane composition, structure and function, is among the mechanisms behind yeast adaptation and tolerance to stress. Pdr18 is a plasma membrane ABC transporter of the pleiotropic drug resistance family and a reported determinant of acetic acid tolerance mediating ergosterol transport. This study provides evidence for the impact of Pdr18 expression in yeast cell wall during adaptation to acetic acid stress. The time-course of acetic-acid-induced transcriptional activation of cell wall biosynthetic genes (FKS1, BGL2, CHS3, GAS1) and of increased cell wall stiffness and cell wall polysaccharide content in cells with the PDR18 deleted, compared to parental cells, is reported. Despite the robust and more intense adaptive response of the pdr18Δ population, the stress-induced increase of cell wall resistance to lyticase activity was below parental strain levels, and the duration of the period required for intracellular pH recovery from acidification and growth resumption was higher in the less tolerant pdr18Δ population. The ergosterol content, critical for plasma membrane stabilization, suffered a drastic reduction in the first hour of cultivation under acetic acid stress, especially in pdr18Δ cells. Results revealed a crosstalk between plasma membrane ergosterol content and cell wall biophysical properties, suggesting a coordinated response to counteract the deleterious effects of acetic acid.

5.
Sci Rep ; 11(1): 12652, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135398

ABSTRACT

This work describes a coordinate and comprehensive view on the time course of the alterations occurring at the level of the cell wall during adaptation of a yeast cell population to sudden exposure to a sub-lethal stress induced by acetic acid. Acetic acid is a major inhibitory compound in industrial bioprocesses and a widely used preservative in foods and beverages. Results indicate that yeast cell wall resistance to lyticase activity increases during acetic acid-induced growth latency, corresponding to yeast population adaptation to sudden exposure to this stress. This response correlates with: (i) increased cell stiffness, assessed by atomic force microscopy (AFM); (ii) increased content of cell wall ß-glucans, assessed by fluorescence microscopy, and (iii) slight increase of the transcription level of the GAS1 gene encoding a ß-1,3-glucanosyltransferase that leads to elongation of (1→3)-ß-D-glucan chains. Collectively, results reinforce the notion that the adaptive yeast response to acetic acid stress involves a coordinate alteration of the cell wall at the biophysical and molecular levels. These alterations guarantee a robust adaptive response essential to limit the futile cycle associated to the re-entry of the toxic acid form after the active expulsion of acetate from the cell interior.


Subject(s)
Acetic Acid/adverse effects , Adaptation, Physiological , Cell Wall , Saccharomyces cerevisiae , Cell Wall/chemistry , Cell Wall/metabolism , Cell Wall/pathology , Microscopy, Atomic Force , Microscopy, Fluorescence , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological , beta-Glucans/chemistry , beta-Glucans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...