Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Pharmacol Ther ; 257: 108636, 2024 May.
Article in English | MEDLINE | ID: mdl-38521246

ABSTRACT

Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.


Subject(s)
Histone Acetyltransferases , Neoplasms , Mice , Animals , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/therapeutic use , Protein Domains , Neoplasms/drug therapy , p300-CBP Transcription Factors/metabolism
2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397113

ABSTRACT

Variations in several nuclear genes predisposing humans to the development of MODY diabetes have been very well characterized by modern genetic diagnostics. However, recent reports indicate that variants in the mtDNA genome may also be associated with the diabetic phenotype. As relatively little research has addressed the entire mitochondrial genome in this regard, the aim of the present study is to evaluate the genetic variations present in mtDNA among individuals susceptible to MODY diabetes. In total, 193 patients with a MODY phenotype were tested with a custom panel with mtDNA enrichment. Heteroplasmic variants were selected for further analysis via further sequencing based on long-range PCR to evaluate the potential contribution of frequent NUMTs (acronym for nuclear mitochondrial DNA) insertions. Twelve extremely rare variants with a potential damaging character were selected, three of which were likely to be the result of NUMTs from the nuclear genome. The variant m.3243A>G in MT-TL1 was responsible for 3.5% of MODY cases in our study group. In addition, a novel, rare, and possibly pathogenic leucine variant m.12278T>C was found in MT-TL2. Our findings also found the MT-CO1 gene to be over-represented in the study group, with a clear phenotype-genotype correlation observed in one family. Our data suggest that heteroplasmic variants in MT-COI and MT-TL2 genes may play a role in the pathophysiology of glucose metabolism in humans.


Subject(s)
Diabetes Mellitus, Type 2 , Genome, Mitochondrial , Humans , DNA, Mitochondrial/genetics , Mutation , Phenotype , Diabetes Mellitus, Type 2/genetics
3.
Ageing Res Rev ; 94: 102206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278370

ABSTRACT

Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.


Subject(s)
Adenosine Diphosphate Ribose , DNA Damage , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Adenosine Diphosphate Ribose/metabolism , Proteolysis , Cellular Senescence/genetics
4.
Biomed Pharmacother ; 168: 115798, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913733

ABSTRACT

Despite extensive efforts and ongoing progress in personalized anticancer approaches, chemotherapy remains the first line or the only treatment for some tumors that may develop resistance to chemotherapeutics in time due to inter alia overexpression of ATP-binding cassette transporters. Using clinically-relevant resistant models of triple negative breast cancer (MDA-MB-231; TNBC) as well as non-small cell lung cancer (A549; NSCLC), we tested the efficacy of I-CBP112 - CBP/EP300 bromodomain inhibitor to overcome drug resistance by declining ABC gene transcription. I-CBP112 significantly reduced ABCB1, ABCC1, ABCC2, ABCC3, ABCC5 and ABCG2 in all resistant lines, as well as ABCC10 in TNBC and ABCC4 in paclitaxel-resistant NSCLC, thereby increasing intracellular drug accumulation and cytotoxicity in 2D and 3D cultures. This was phenocopied only by the joint effect of ABC inhibitors such as tariquidar (ABCB1 - P-glycoprotein and ABCG2) and MK-571 (ABCC), whereas single inhibition of ABCB1/ABCG2 or ABCC proteins did not affect drug accumulation, thereby implying the need of simultaneous deficiency in activity of majority of drug pumps for enhanced drug retention. I-CBP112 failed to directly inhibit activity of ABCB1, ABCG2 and ABCC subfamily members at the same time. Importantly, I-CBP112 treated cancer cells polarized human macrophages into proinflammatory phenotypes. Moreover, I-CBP112 remained non-toxic to primary cell lines, nor did it enhance anticancer drug toxicity to blood-immune cells. In silico assay of ADMET properties confirmed the desired pharmacokinetic features of I-CBP112. The results suggest that the CBP/p300 inhibitor is a promising co-adjuvant to chemotherapy in drug-resistant cancer phenotypes, capable of decreasing ABC transporter expression.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Triple Negative Breast Neoplasms , Humans , ATP-Binding Cassette Transporters , Drug Resistance, Multiple , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , A549 Cells , Triple Negative Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Cell Line, Tumor , Antineoplastic Agents/therapeutic use
5.
Cell Physiol Biochem ; 57(5): 360-378, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37767694

ABSTRACT

BACKGROUND/AIMS: Cancer cell multidrug resistance induced by paclitaxel contributes to the high failure rates of chemotherapy and relapse of the disease. Several mechanisms have been described that underlie the observed resistance, including the overexpression of ABCB1 (P-glycoprotein), which represents an ATP-binding cassette (ABC) transmembrane protein, and its functional occurrence in lysosomal membranes is linked to drug accumulation in these organelles. METHODS: Using clinically-relevant models of paclitaxel-resistant triple-negative breast cancer and non-small cell lung cancer cell lines, we provide evidence for the role of ABCC subfamily members in the lysosomal sequestration of drugs in multidrug resistant phenotypes. Proteins expression level and its cellular localisation was measured using Western Blot and confocal microscopy. Drug accumulation was analysed by confocal microscopy and flow cytometry. Drug cytotoxicity was tested using resasurin assay and anexin V propidium iodide staining. RESULTS: Regardless of the alteration in gene expression, paclitaxel induced the intracellular redistribution of ABCC3, ABCC5 and ABCC10 and their enrichment in lysosomes. The use of ABCC inhibitors and transient silencing of these three genes limited the accumulation of doxorubicin and paclitaxel-OregonGreen488 in lysosomes, while having little impact on the total drug level inside cells. The cancer cells were also sensitized to various structurally unrelated chemotherapeutics of differing acidity. CONCLUSION: The results suggest that lysosome membranes anchored ABCC proteins which remained functionally active and were capable to load chemotherapeutics into lysosomes in paclitaxel-resistant cancer cells. Therefore, targeting of lysosomal ABCC transporters may help to overcome paclitaxel-induced resistance by reducing the accumulation of drugs in lysosomes.

6.
Cancers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35205642

ABSTRACT

Although cisplatin-based therapies are common among anticancer approaches, they are often associated with the development of cancer drug resistance. This phenomenon is, among others, caused by the overexpression of ATP-binding cassette, membrane-anchored transporters (ABC proteins), which utilize ATP to remove, e.g., chemotherapeutics from intracellular compartments. To test the possible molecular basis of increased expression of ABCC subfamily members in a cisplatin therapy mimicking model, we generated two cisplatin-resistant cell lines derived from non-small cell lung cancer cells (A549) and triple-negative breast cancer cells (MDA-MB-231). Analysis of data for A549 cells deposited in UCSC Genome Browser provided evidence on the negative interdependence between the occurrence of the CoREST complex at the gene promoters and the overexpression of ABCC genes in cisplatin-resistant lung cancer cells. Pharmacological inhibition of CoREST enzymatic subunits-LSD1 and HDACs-restored gene responsiveness to cisplatin. Overexpression of CoREST-free ABCC10 in cisplatin-resistant phenotypes was caused by the activity of EP300 that was enriched at the ABCC10 promoter in drug-treated cells. Cisplatin-induced and EP300-dependent transcriptional activation of ABCC10 was only possible in the presence of p53. In summary, the CoREST complex prevents the overexpression of some multidrug resistance proteins from the ABCC subfamily in cancer cells exposed to cisplatin. p53-mediated activation of some ABCC genes by EP300 occurs once their promoters are devoid of the CoREST complex.

7.
Cells ; 10(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34572113

ABSTRACT

The increased level of hydrogen peroxide accompanies some modes of macrophage specification and is linked to ROS-based antimicrobial activity of these phagocytes. In this study, we show that activation of toll-like receptors with bacterial components such as LPS is accompanied by the decline in transcription of hydrogen peroxide decomposing enzyme-catalase, suppression of which facilitates the polarization of human macrophages towards the pro-inflammatory phenotype. The chromatin remodeling at the CAT promoter involves LSD1 and HDAC1, but activity of the first enzyme defines abundance of the two proteins on chromatin, histone acetylation status and the CAT transcription. LSD1 inhibition prior to macrophage activation with LPS prevents CAT repression by enhancing the LSD1 and interfering with the HDAC1 recruitment to the gene promoter. The maintenance of catalase level with LSD1 inhibitors during M1 polarization considerably limits LPS-triggered expression of some pro-inflammatory cytokines and markers such as IL1ß, TNFα, COX2, CD14, TLR2, and IFNAR, but the effect of LSD1 inhibitors is lost upon catalase deficiency. Summarizing, activity of LSD1 allows for the CAT repression in LPS stimulated macrophages, which negatively controls expression of some key pro-inflammatory markers. LSD1 inhibitors can be considered as possible immunosuppressive drugs capable of limiting macrophage M1 specialization.


Subject(s)
Catalase/antagonists & inhibitors , Histone Deacetylase 1/metabolism , Histone Demethylases/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Toll-Like Receptors/metabolism , Catalase/genetics , Catalase/metabolism , Cell Differentiation , Cytokines/metabolism , Histone Deacetylase 1/genetics , Histone Demethylases/genetics , Humans , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Signal Transduction , Toll-Like Receptors/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
Cancers (Basel) ; 13(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34572840

ABSTRACT

The high expression of some ATP-binding cassette (ABC) transporters is linked to multidrug resistance in cancer cells. We aimed to determine if I-CBP112, which is a CBP/p300 bromodomain inhibitor, altered the vulnerability of the MDA-MB-231 cell line to chemotherapy drugs, which are used in neoadjuvant therapy in patients with triple negative breast cancer (TNBC). MDA-MB-231 cells represent TNBC, which is negative for the expression of estrogen and progesterone receptors and HER2 protein. An I-CBP112-induced decrease in the expression of all the studied ABCs in the breast, but also in the lung (A549), and hepatic (HepG2) cancer cell lines was associated with increased accumulation of doxorubicin, daunorubicin, and methotrexate inside the cells as well as with considerable cell sensitization to a wide range of chemotherapeutics. Gene promoters repressed by I-CBP112 in MDA-MB-231 cells, such as ABCC1 and ABCC10, were characterized by enhanced nucleosome acetylation and, simultaneously, by considerably lower trimethylation in the transcription-promoting form of H3K4me3. The CBP/p300 bromodomain inhibitor induced the recruitment of LSD1 to the gene promoters. The inhibition of this demethylase in the presence of I-CBP112 prevented the repression of ABCC1 and ABCC10 and, to a considerable extent, cancer cells' sensitization to drugs. In conclusion, the CBP/p300 bromodomain inhibitor I-CBP112 can be considered as a potent anti-multidrug-resistance agent, capable of repressing key ABC transporters responsible for drug efflux in various cancer types.

9.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671709

ABSTRACT

Secondary infections cause sepsis that lead to patient disability or death. Contact of macrophages with bacterial components (such as lipopolysaccharide-LPS) activates the intracellular signaling pathway downstream of Toll-like receptors (TLR), which initiate an immune proinflammatory response. However, the expression of nuclear factor-kappa B (NF-κB)-dependent proinflammatory cytokines significantly decreases after single high or multiple LPS stimulations. Knowing that poly(ADP-ribose) polymerase-1 (PARP1) serves as a cofactor of NF-κB, we aimed to verify a hypothesis of the possible contribution of PARP1 to the development of LPS-induced tolerance in human macrophages. Using TNF-α mRNA expression as a readout, we demonstrate that PARP1 interaction with the TNF-α promoter, controls macrophage immunoparalysis. We confirm that PARP1 is extruded from the gene promoter, whereas cell pretreatment with Olaparib maintains macrophage responsiveness to another LPS treatment. Furthermore, cell pretreatment with proteasome inhibitor MG132 completely abrogates the effect of Olaparib, suggesting that PARP1 acts with NF-κB in the same regulatory pathway, which controls pro-inflammatory cytokine transcription. Mechanistically, PARP1 trapping allows for the re-rebinding of p65 to the TNF-α promoter in LPS-stimulated cells. In conclusion, PARP traps prevent PARP1 extrusion from the TNF-α promoter upon macrophage stimulation, thereby maintaining chromatin responsiveness of TLR activation, allowing for the re-binding of p65 and TNF-α transcription.

10.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562813

ABSTRACT

The conserved Blm10/PA200 proteins are proteasome activators. Previously, we identified PA200-enriched regions in the genome of SH-SY5Y neuroblastoma cells by chromatin immunoprecipitation (ChIP) and ChIP-seq analysis. We also found that selective mitochondrial inhibitors induced PA200 redistribution in the genome. Collectively, our data indicated that PA200 regulates cellular homeostasis at the transcriptional level. In the present study, our aim is to investigate the impact of stable PA200 depletion (shPA200) on the overall transcriptome of SH-SY5Y cells. RNA-seq data analysis reveals that the genetic ablation of PA200 leads to overall changes in the transcriptional landscape of SH-SY5Y neuroblastoma cells. PA200 activates and represses genes regulating metabolic processes, such as the glycolysis and mitochondrial function. Using metabolic assays in live cells, we showed that stable knockdown of PA200 does not change basal respiration. Spare respiratory capacity and proton leak however are slightly, yet significantly, reduced in PA200-deficient cells by 99.834% and 84.147%, respectively, compared to control. Glycolysis and glycolytic capacity show a 42.186% and 26.104% increase in shPA200 cells, respectively, compared to control. These data suggest a shift from oxidative phosphorylation to glycolysis especially when cells are exposed to oligomycin-induced stress. Furthermore, we observed a preserved long and compact tubular mitochondrial morphology after inhibition of ATP synthase by oligomycin, which might be associated with the glycolytic change of shPA200 cells. The present study also demonstrates that the proteolytic cleavage of Opa1 is affected, and that the level of OMA1 is significantly reduced in shPA200 cells upon oligomycin-induced mitochondrial insult. Together, these findings suggest a role for PA200 in the regulation of metabolic changes in response to selective inhibition of ATP synthase in an in vitro cellular model.


Subject(s)
GTP Phosphohydrolases/genetics , Gene Expression Profiling/methods , Neuroblastoma/genetics , Nuclear Proteins/genetics , RNA, Small Interfering/pharmacology , Cell Line, Tumor , Chromatin Immunoprecipitation , Gene Deletion , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Glycolysis/drug effects , Humans , Mitochondria/drug effects , Mitochondria/genetics , Nuclear Proteins/antagonists & inhibitors , Oligomycins/pharmacology , Oxidative Phosphorylation/drug effects , Sequence Analysis, RNA
11.
Postepy Biochem ; 66(1): 10-18, 2020 03 31.
Article in Polish | MEDLINE | ID: mdl-33320476

ABSTRACT

ATP-dependent chromatin remodeling complexes are documented as indispensible element of epigenetic mechanisms, which control transcription. These multiprotein functional units are capable of insertion, deletion and sliding of nucleosomes at the gene regulatory elements thereby defining DNA accessibility to transcription machinery. SWI/SNF is one out of four identified and described complexes. The enzymatic role in SWI/SNF molecular "motors" is assigned to two ATP-ases: BRM and BRG1. Accumulating evidence suggests the link between BRG1 and pathophysiology of some types of cancer. BRG1 has been documented as an activator of genes encoding factors responsible for i.a. proliferation, DNA repair, transmembrane transport and metabolism. Therefore, inhibitors of BRG1 and co-operating enzymes, which modulate activity of this ATP-ase or mark histones for shuttling to/from the chromatin, may turn out as an alternative to the compounds that are currently used to suppress the growth of tumors or as supplements that increase cell vulnerability to anticancer drugs.


Subject(s)
DNA Helicases/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Chromatin Assembly and Disassembly , Humans , Neoplasms/genetics , Phenotype
12.
Cells ; 9(9)2020 09 06.
Article in English | MEDLINE | ID: mdl-32900001

ABSTRACT

Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. PARP inhibitors, which prevent protein ADP-ribosylation, and PARP1‒DNA traps, which capture the enzyme on chromatin, may allow us to modulate immune responses and the development of particular cell types. They can be also effective in the treatment of monocytic leukemia and other cancers by reverting the anti- to the proinflammatory phenotype in tumor-associated macrophages.


Subject(s)
Macrophages/metabolism , Monocytes/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Cell Differentiation , Humans
13.
J Cell Mol Med ; 24(12): 6716-6730, 2020 06.
Article in English | MEDLINE | ID: mdl-32368861

ABSTRACT

The conserved Blm10/PA200 activators bind to the proteasome core and facilitate peptide and protein turnover. Blm10/PA200 proteins enhance proteasome peptidase activity and accelerate the degradation of unstructured proteasome substrates. Our knowledge about the exact role of PA200 in diseased cells, however, is still limited. Here, we show that stable knockdown of PA200 leads to a significantly elevated number of cells in S phase after treatment with the ATP synthase inhibitor, oligomycin. However, following exposure to the complex I inhibitor rotenone, more PA200-depleted cells were in sub-G1 and G2/M phases indicative of apoptosis. Chromatin immunoprecipitation (ChIP) and ChIP-seq data analysis of collected reads indicate PA200-enriched regions in the genome of SH-SY5Y. We found that PA200 protein peaks were in the vicinity of transcription start sites. Gene ontology annotation revealed that genes whose promoters were enriched upon anti-PA200 ChIP contribute to the regulation of crucial intracellular processes, including proliferation, protein modifications and metabolism. Selective mitochondrial inhibitors induced PA200 redistribution in the genome, leading to protein withdrawal from some gene promoters and binding to others. Collectively, the results support a model in which PA200 potentially regulates cellular homeostasis at the transcriptional level, in addition to its described role as an alternative activator of the proteasome.


Subject(s)
Gene Expression Regulation, Neoplastic , Mitochondria/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Nuclear Proteins/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Death/drug effects , Cell Death/genetics , Cell Line, Tumor , Cell Survival/genetics , Chromatin/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mitochondria/drug effects , Oligomycins/pharmacology , Reproducibility of Results , Rotenone/administration & dosage , Rotenone/pharmacology
14.
Cancers (Basel) ; 12(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033115

ABSTRACT

Cancer malignancy is usually characterized by unlimited self-renewal. In some types of advanced tumors that are rapidly dividing, gene expression profiles depict elevations in pro-proliferative genes accompanied by coordinately elevated transcription of factors responsible for removal of DNA lesions. In our studies, fast proliferating breast cancer cell lines (MDA-MB-231 and MCF7), BRG1, a component of the SWI/SNF complex, emerges as an activator of functionally-linked genes responsible for activities such as mitotic cell divisions and DNA repair. Products of at least some of them are considerably overrepresented in breast cancer cells and BRG1 facilitates growth of MCF7 and MDA-MB-231 cell lines. BRG1 occurs at the promoters of genes such as CDK4, LIG1, and NEIL3, which are transcriptionally controlled by cell cycle progression and highly acetylated by EP300 in proliferating cells. As previously documented, in dividing cells BRG1 directly activates gene transcription by evicting EP300 modified nucleosomes from the promoters and, thereby, relaxing chromatin. However, the deficiency of BRG1 or EP300 activity for 48 h leads to cell growth arrest and to chromatin compaction, but also to the assembly of RB1/HDAC1/EZH2 complexes at the studied cell cycle-dependent gene promoters. Epigenetic changes include histone deacetylation and accumulation of H3K27me trimethylation, both known to repress transcription. Cell cycle arrest in G1 by inhibition of CDK4/6 phenocopies the effect of the long-term BRG1 inhibition on the chromatin structure. These results suggest that BRG1 may control gene transcription also by promoting expression of genes responsible for cell cycle progression in the studied breast cancer cells. In the current study, we show that BRG1 binding occurs at the promoters of functionally linked genes in proliferating breast cancer cells, revealing a new mechanism by which BRG1 defines gene transcription.

15.
Homo ; 71(1): 43-50, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-31939994

ABSTRACT

The beginning of the early Middle Ages period in Poland (10th-14th century) has been widely debated in the context of an active demographic inflow from other countries and its contribution to the creation of the new country. Finding chamber graves which are considered typical for the Scandinavian ethnic group in a few cemeteries in Poland has become the basis for the anthropological inference on the potential participation of North European people in forming the social elite of medieval Poland. However, the question of whether this fact was the result of presence of people from other countries lacks an unambiguous answer. We attempted to isolate ancient DNA from the medieval necropolis in Kaldus where several chamber graves have been found and analysed the genetic diversity of maternal lineage of this population. We analysed the HVR I fragment and coding regions to assess the mitochondrial DNA haplogroup. We have identified a few relatively rare haplogroups (A2, T2b4a, HV, K1a11, J2b1a, and X2) which were previously found in early medieval sites in Norway and Denmark. Obtained results might suggest genetic relation between the people of Kaldus and past northern Europe populations. Present and further research can undoubtedly shed new light on the aspect of the formation of the early medieval Polish population.


Subject(s)
Cemeteries/history , DNA, Mitochondrial/genetics , Haplotypes/genetics , White People/genetics , Adult , Anthropology, Physical , Child , Female , History, Medieval , Humans , Male , Poland
16.
Cancers (Basel) ; 11(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614656

ABSTRACT

BRG1, an active subunit of the SWI/SNF chromatin-remodeling complex, enables the EP300-dependent transcription of proliferation and DNA repair genes from their E2F/CpG-driven promoters in breast cancer cells. In the current study, we show that BRG1-EP300 complexes are accompanied by poly-ADP-ribose polymerase 1 (PARP1), which emerges as the functional component of the promoter-bound multiprotein units that are capable of controlling gene expression. This enzyme is co-distributed with BRG1 at highly acetylated promoters of genes such as CDK4, LIG1, or NEIL3, which are responsible for cancer cell growth and the removal of DNA damage. ADP-ribosylation is necessary to maintain active transcription, since it ensures an open chromatin structure that allows high acetylation and low histone density. PARP1-mediated modification of BRG1 and EP300 does not affect the association of enzymes with gene promoters; however, it does activate EP300, which acetylates nucleosomes, leading to their eviction by BRG1, thus allowing mRNA synthesis. Although PARP1 was found at BRG1 positive/H3K27ac negative promoters of highly expressed genes in a transformed breast cancer cell line, its transcriptional activity was limited to genes simultaneously controlled by BRG1 and EP300, indicating that the ADP-ribosylation of EP300 plays a dominant role in the regulation of BRG1-EP300-driven transcription. In conclusion, PARP1 directs the transcription of some proliferation and DNA repair genes in breast cancer cells by the ADP-ribosylation of EP300, thereby causing its activation and marking nucleosomes for displacement by BRG1. PARP1 in rapidly dividing cells facilitates the expression of genes that confer a cancer cell phenotype. Our study shows a new mechanism that links PARP1 with the removal of DNA damage in breast cancer cells via the regulation of BRG1-EP300-dependent transcription of genes involved in DNA repair pathways.

17.
Biochim Biophys Acta Gene Regul Mech ; 1862(2): 198-208, 2019 02.
Article in English | MEDLINE | ID: mdl-30414852

ABSTRACT

Differentiation of human macrophages predisposes these cells to numerous tasks, i.e. killing invading pathogens, and this entails the need for enhanced intracellular defences against stress, including conditions that may increase DNA damage. Our study shows that expression of DNA repair enzymes, such as PARP1, BRCA1 and XRCC1, are activated during macrophage development by the SWI/SNF chromatin remodelling complex, which serves as a histone acetylation sensor. It recognises and displaces epigenetically marked nucleosomes, thereby enabling transcription. Acetylation is controlled both in monocytes and macrophages by the co-operation of EP300 and HDAC1 activities. Differentiation modulates the activities of individual components of EP300-HDAC1-SWI/SNF functional unit and entails recruitment of PBAF to gene promoters. In monocytes, histone-deacetylated promoters of repressed PARP1, BRCA1 and XRCC1 respond only to HDAC inhibition, with an opening of the chromatin structure by BRM, whereas in macrophages both EP300 and HDAC1 contribute to the fine-tuning of nucleosomal acetylation, with HDAC1 remaining active and the balance of EP300 and HDAC1 activities controlling nucleosome eviction by BRG1-containing SWI/SNF. Since EP300-HDAC1-SWI/SNF operates at the level of gene promoters characterized simultaneously by the presence of E2F binding site(s) and CpG island(s), this allows cells to adjust PARP1, BRCA1 and XRCC1 transcription to the differentiation mode and to restart cell cycle progression. Thus, mutual interdependence between acetylase and deacetylase activities defines the acetylation-dependent code for regulation of histone density and gene transcription by SWI/SNF, notably on gene promoters of DNA repair enzymes.


Subject(s)
Cell Differentiation , Chromatin Assembly and Disassembly , DNA Repair Enzymes/genetics , Macrophages/cytology , Acetylation , E1A-Associated p300 Protein , Histone Deacetylase 1 , Humans , Nucleosomes/metabolism , Transcription, Genetic
18.
Free Radic Biol Med ; 131: 218-224, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30529301

ABSTRACT

The function of macrophages makes them vulnerable to several sources of stress and damage, and thus there is a considerable requirement for some form of resilient molecular defence. Differentiation of human macrophages and their further pro-inflammatory (M1) polarization with bacterial endotoxin is associated with increased transcription of PARP1 and SOD2. The latter gene responded immediately to LPS with high NFκB-dependent expression rate, and the resulting enzyme made M1 macrophages resistant to hydrogen peroxide-induced oxidative stress and associated cell death. LPS-induced recruitment of RELA to SOD2 promoter was accompanied by release of PARP1 and LSD1 from chromatin and increased H3K4 di- and tri-methylation. PARP1 dissociation from SOD2 promoter occurred at an early stage of SOD2 transcriptional activation. This event contributed to the termination of mRNA synthesis at a later stage of macrophage polarization by allowing LSD1 to rebind to the SOD2 promoter. LSD1 removed transcription-promoting methylation of H3K4 and led to displacement of RELA. Analysis of temporal changes at the SOD2 promoter indicated a direct mutual interdependence between PARP1, LSD1, H3K4 methylation and the ongoing SOD2 transcription, which correlated positively with both PARP1 abundance on the chromatin and dimethylation of H3K4, but negatively with LSD1 and chromatin compaction in LPS-treated macrophages. Deficiency of LSD1 activity and maintenance of PARP1 at the SOD2 promoter substantially upregulated SOD2 level, thereby further increasing resistance of M1 macrophages to hydrogen peroxide. Inhibitors of LSD1 and PARP1 poisons that capture the latter enzyme on the chromatin seem to be prosurvival molecular tools protecting polarized macrophages from certain pro-oxidative conditions.


Subject(s)
Cell Death/drug effects , Histone Demethylases/genetics , Hydrogen Peroxide/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Poly (ADP-Ribose) Polymerase-1/genetics , Superoxide Dismutase/genetics , Cell Death/genetics , Chromatin/chemistry , Chromatin/metabolism , Gene Expression Regulation , Histone Demethylases/metabolism , Histones/genetics , Histones/metabolism , Humans , Hydrogen Peroxide/pharmacology , Macrophages/cytology , Macrophages/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Primary Cell Culture , Promoter Regions, Genetic , Signal Transduction , Superoxide Dismutase/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Transcription, Genetic
19.
Free Radic Biol Med ; 131: 184-196, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30502458

ABSTRACT

In inflamed tissues or during ischemia-reperfusion episodes, activated macrophages produce large amounts of reactive species and are, thus, exposed to the damaging effects of reactive species. Here, our goal was to investigate the mechanism whereby activated macrophages protect themselves from oxidant stress-induced cell death. Hydrogen peroxide-treated mouse bone marrow-derived macrophages (BMDM) and THP-1 human monocyte-derived cells were chosen as models. We found a gradual development of resistance: first in monocyte-to-macrophage differentiation, and subsequently after lipopolysaccharide (LPS) exposure. Investigating the mechanism of the latter, we found that exposure to intense hydrogen peroxide stress causes poly(ADP-ribose) polymerase-1 (PARP-1) dependent programmed necrotic cell death, also known as parthanatos, as indicated by the protected status of PARP-1 knockout BMDMs and the protective effect of the PARP inhibitor PJ-34. In hydrogen peroxide-treated macrophages, however, apoptosis inducing factor (AIF) proved dispensable for parthanatos; nuclear translocation of AIF was not observed. A key event in LPS-mediated protection against the hydrogen peroxide-induced AIF independent parthanatos was downregulation of PARP1 mRNA and protein. The importance of this event was confirmed by overexpression of PARP1 in THP1 cells using a viral promoter, which lead to stable PARP1 levels even after LPS treatment and unresponsiveness to LPS-induced cytoprotection. In BMDMs, LPS-induced PARP1 suppression lead to prevention of NAD+ depletion. Moreover, LPS also induced expression of antioxidant proteins (superoxide dismutase-2, thioredoxin reductase 1 and peroxiredoxin) and triggered a metabolic shift to aerobic glycolysis, also known as the Warburg effect. In summary, we provide evidence that in macrophages intense hydrogen peroxide stress causes AIF-independent parthanatos from which LPS provides protection. The mechanism of LPS-mediated cytoprotection involves downregulation of PARP1, spared NAD+ and ATP pools, upregulation of antioxidant proteins, and a metabolic shift from mitochondrial respiration to aerobic glycolysis.


Subject(s)
Apoptosis Inducing Factor/genetics , Hydrogen Peroxide/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Poly (ADP-Ribose) Polymerase-1/genetics , Superoxide Dismutase/genetics , Animals , Apoptosis Inducing Factor/metabolism , Gene Expression Regulation , Glycolysis/drug effects , Glycolysis/genetics , Humans , Hydrogen Peroxide/antagonists & inhibitors , Macrophage Activation/drug effects , Macrophages/cytology , Macrophages/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , NAD/metabolism , Oxidative Phosphorylation/drug effects , Parthanatos/drug effects , Parthanatos/genetics , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Phenanthrenes/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Primary Cell Culture , Promoter Regions, Genetic , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , THP-1 Cells , Thioredoxin Reductase 1/genetics , Thioredoxin Reductase 1/metabolism
20.
Oxid Med Cell Longev ; 2018: 5286785, 2018.
Article in English | MEDLINE | ID: mdl-30581533

ABSTRACT

Wound healing is a complex multiphase process which can be hampered by many factors including impaired local circulation, hypoxia, infection, malnutrition, immunosuppression, and metabolic dysregulation in diabetes. Redox dysregulation is a common feature of many skin diseases demonstrated by virtually all cell types in the skin with overproduction of reactive oxygen and nitrogen species. The objective of this study was to characterize the redox environment in wound fluids and sera from patients suffering from chronic leg ulcers (n = 19) and acute wounds (bulla fluids from second degree burns; n = 11) with serum data also compared to those from healthy volunteers (n = 7). Significantly higher concentrations of TNF-α, interleukine-8, vascular endothelial growth factor, and lactate dehydrogenase (measure of cell damage) were found in fluids from chronic wounds compared to acute ones. The extent of protein carbonylation (measure of protein oxidation), lipid peroxidation, and tyrosine nitration (indicator of peroxynitrite production) was similar in acute and chronic wound fluids, while radical scavenging activity and glutathione (GSH) levels were elevated in chronic wound fluids compared to acute wounds. Sera were also assessed for the same set of parameters with no significant differences detected. Nitrotyrosine (the footprint of the potent oxidant peroxynitrite) and poly(ADP-ribose) (the product of the DNA damage sensor enzyme PARP-1) could be detected in wound biopsies. Our data identify multiple signs of redox stress in chronic wounds with notable differences. In chronic wounds, elevations in antioxidant levels/activities may indicate compensatory mechanisms against inflammation. The presence of nitrotyrosine and poly(ADP-ribose) in tissues from venous leg ulcers indicate peroxynitrite production and PARP activation in chronic wounds.


Subject(s)
Wound Healing/physiology , Aged , Aged, 80 and over , Female , Glutathione/metabolism , Humans , Interleukin-8/metabolism , L-Lactate Dehydrogenase/metabolism , Lipid Peroxidation/physiology , Male , Middle Aged , Oxidation-Reduction , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Protein Carbonylation/physiology , Thiobarbituric Acid Reactive Substances/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...