Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(5): 2745-2755, 2024 May.
Article in English | MEDLINE | ID: mdl-38437100

ABSTRACT

Active exploration in virtual reality (VR) involves users navigating immersive virtual environments, going from one place to another. While navigating, users often engage in secondary tasks that require attentional resources, as in the case of distracted driving. Inspired by research generally studying the effects of task demands on cybersickness (CS), we investigated how the attentional demands specifically associated with secondary tasks performed during exploration affect CS. Downstream of this, we studied how increased attentional demands from secondary tasks affect spatial memory and navigational performance. We discuss the results of a multi-factorial between-subjects study, manipulating a secondary task's demand across two levels and studying its effects on CS in two different sickness-inducing levels of an exploration experience. The secondary task's demand was manipulated by parametrically varying $n$ in an aural $n$-back working memory task and the provocativeness of the experience was manipulated by varying how frequently users experienced a yaw-rotational reorientation effect during the exploration. Results revealed that increases in the secondary task's demand increased sickness levels, also resulting in a higher temporal onset rate, especially when the experience was not already highly sickening. Increased attentional demand from the secondary task also vitiated navigational performance and spatial memory. Overall, increased demands from secondary tasks performed during navigation produce deleterious effects on the VR experience.


Subject(s)
Computer Graphics , Virtual Reality , Humans , Task Performance and Analysis , Attention
2.
Article in English | MEDLINE | ID: mdl-38437122

ABSTRACT

Mixed reality (MR) interactions feature users interacting with a combination of virtual and physical components. Inspired by research investigating aspects associated with near-field interactions in augmented and virtual reality (AR & VR), we investigated how avatarization, the physicality of the interacting components, and the interaction technique used to manipulate a virtual object affected performance and perceptions of user experience in a mixed reality fundamentals of laparoscopic peg-transfer task wherein users had to transfer a virtual ring from one peg to another for a number of trials. We employed a 3 (Physicality of pegs) X 3 (Augmented Avatar Representation) X 2 (Interaction Technique) multi-factorial design, manipulating the physicality of the pegs as a between-subjects factor, the type of augmented self-avatar representation, and the type of interaction technique used for object-manipulation as within-subjects factors. Results indicated that users were significantly more accurate when the pegs were virtual rather than physical because of the increased salience of the task-relevant visual information. From an avatar perspective, providing users with a reach envelope-extending representation, though useful, was found to worsen performance, while co-located avatarization significantly improved performance. Choosing an interaction technique to manipulate objects depends on whether accuracy or efficiency is a priority. Finally, the relationship between the avatar representation and interaction technique dictates just how usable mixed reality interactions are deemed to be.

3.
Article in English | MEDLINE | ID: mdl-37418399

ABSTRACT

Cybersickness (CS) is one of the challenges that has hindered the widespread adoption of Virtual Reality (VR). Consequently, researchers continue to explore novel means to mitigate the undesirable effects associated with this affliction, one that may require a combination of remedies as opposed to a solitary stratagem. Inspired by research probing into the use of distractions as a means to control pain, we investigated the efficacy of this countermeasure against CS, studying how the introduction of temporally time-gated distractions affects this malady during a virtual experience featuring active exploration. Downstream of this, we discuss how other aspects of the VR experience are affected by this intervention. We discuss the results of a between-subjects study manipulating the presence, sensory modality, and nature of periodic and short-lived (5-12 seconds) distractor stimuli across 4 experimental conditions: (1) no-distractors (ND); (2) auditory distractors (AD); (3) visual distractors (VD); (4) cognitive distractors (CD). Two of these conditions (VD and AD) formed a yoked control design wherein every matched pair of 'seers' and 'hearers' was periodically exposed to distractors that were identical in terms of content, temporality, duration, and sequence. In the CD condition, each participant had to periodically perform a 2-back working memory task, the duration and temporality of which was matched to distractors presented in each matched pair of the yoked conditions. These three conditions were compared to a baseline control group featuring no distractions. Results indicated that the reported sickness levels were lower in all three distraction groups in comparison to the control group. The intervention was also able to both increase the amount of time users were able to endure the VR simulation, as well as avoid causing detriments to spatial memory and virtual travel efficiency. Overall, it appears that it may be possible to make users less consciously aware and bothered by the symptoms of CS, thereby reducing its perceived severity.

4.
Article in English | MEDLINE | ID: mdl-37027700

ABSTRACT

User representations are critical to the virtual experience, and involve both the input device used to support interactions as well as how the user is virtually represented in the scene. Inspired by previous work that has shown effects of user representations on the perceptions of relatively static affordances, we attempt to investigate how end-effector representations affect the perceptions of affordances that dynamically change over time. Towards this end, we empirically evaluated how different virtual hand representations affect users' perceptions of dynamic affordances in an object retrieval task wherein users were tasked with retrieving a target from a box for a number of trials while avoiding collisions with its moving doors. We employed a 3 (virtual end-effector representation) X 13 (frequency of moving doors) X 2 (target object size) multi-factorial design, manipulating the input modality and its concomitant virtual end-effector representation as a between-subjects factor across three experimental conditions: (1) Controller (using a controller represented as a virtual controller); (2) Controller-hand (using a controller represented as a virtual hand); (3) Glove (using a hand tracked hi-fidelity glove represented as a virtual hand). Results indicated that the controller-hand condition produced lower levels of performance than both the other conditions. Furthermore, users in this condition exhibited a diminished ability to calibrate their performance over trials. Overall, we find that representing the end-effector as a hand tends to increase embodiment but can also come at the cost of performance, or an increased workload due to a discordant mapping between the virtual representation and the input modality used. It follows that VR system designers should carefully consider the priorities and target requirements of the application being developed when choosing the type of end-effector representation for users to embody in immersive virtual experiences.

5.
Article in English | MEDLINE | ID: mdl-37027732

ABSTRACT

Inspired by previous works showing promise for AR self-avatarization - providing users with an augmented self avatar, we investigated whether avatarizing users' end-effectors (hands) improved their interaction performance on a near-field, obstacle avoidance, object retrieval task wherein users were tasked with retrieving a target object from a field of non-target obstacles for a number of trials. We employed a 3 (Augmented hand representation) X 2 (density of obstacles) X 2 (size of obstacles) X 2 (virtual light intensity) multi-factorial design, manipulating the presence/absence and anthropomorphic fidelity of augmented self-avatars overlaid on the user's real hands, as a between subjects factor across three experimental conditions: (1) No-Augmented Avatar (using only real hands); (2) Iconic-Augmented Avatar; (3) Realistic Augmented Avatar. Results indicated that self-avatarization improved interaction performance and was perceived as more usable regardless of the anthropomorphic fidelity of avatar. We also found that the virtual light intensity used in illuminating holograms affects how visible one's real hands are. Overall, our findings seem to indicate that interaction performance may improve when users are provided with a visual representation of the AR system's interacting layer in the form of an augmented self-avatar.

6.
Article in English | MEDLINE | ID: mdl-37027739

ABSTRACT

With the popularity of Virtual Reality (VR) on the rise, creators from a variety of fields are building increasingly complex experiences that allow users to express themselves more naturally. Self-avatars and object interaction in virtual worlds are at the heart of these experiences. However, these give rise to several perception based challenges that have been the focus of research in recent years. One area that garners most interest is understanding the effects of self-avatars and object interaction on action capabilities or affordances in VR. Affordances have been shown to be influenced by the anthropometric and anthropomorphic properties of the self-avatar embodied. However, self-avatars cannot fully represent real world interaction and fail to provide information about the dynamic properties of surfaces in the environment. For example, pressing against a board to feel its rigidity. This lack of accurate dynamic information can be further amplified when interacting with virtual handheld objects as the weight and inertial feedback associated with them is often mismatched. To investigate this phenomenon, we looked at how the absence of dynamic surface properties affect lateral passability judgments when carrying virtual handheld objects in the presence or absence of gender matched body-scaled self-avatars. Results suggest that participants can calibrate to the missing dynamic information in the presence of self-avatars to make lateral passability judgments, but rely on their internal body schema of a compressed physical body depth in the absence of self-avatars.

7.
IEEE Trans Vis Comput Graph ; 28(12): 4198-4210, 2022 12.
Article in English | MEDLINE | ID: mdl-34033542

ABSTRACT

The availability of new and improved display, tracking and input devices for Virtual Reality experiences has facilitated the use of partial and full body self-avatars in interaction with virtual objects in the environment. However, scaling the avatar to match the user's body dimensions remains to be a cumbersome process. Moreover, the effect of body-scaled self-avatars on size perception of virtual handheld objects and related action capabilities has been relatively unexplored. To this end, we present an empirical evaluation investigating the effect of the presence or absence of body-scaled self-avatars and visuo-motor calibration on frontal passability affordance judgments when interacting with virtual handheld objects. The self-avatar's dimensions were scaled to match the participant's eyeheight, arms length, shoulder width and body depth along the mid section. The results indicate that the presence of body-scaled self-avatars produce more realistic judgments of passability and aid the calibration process when interacting with virtual objects. Also, participants rely on the visual size of virtual objects to make judgments even though the kinesthetic and proprioceptive feedback of the object is missing or mismatched.


Subject(s)
Computer Graphics , Virtual Reality , Humans , Calibration , User-Computer Interface , Size Perception
8.
J Exp Psychol Appl ; 25(1): 1-24, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30346194

ABSTRACT

In virtual reality (VR), avatars are graphical representations of people. Previous research highlights benefits of having a self-avatar when perceiving-acting while embedded in a virtual environment. We studied the effect that an altered avatar had on the perception of one's action capabilities. In Experiment 1, some participants acted with a normal, or faithful, avatar whereas another group of participants used an avatar with an extended arm, all in virtual reality. Experiment 2 utilized the same methodology and procedure as Experiment 1, except that only a calibration phase occurred in VR, whereas other phases were completed in the real world. All participants performed reaches to various distances presented visually. Results showed that calibration to altered dimensions of avatars is possible after receiving feedback while acting with the altered avatar. Calibration occurred more quickly when feedback was used to transition from a normal avatar to an altered avatar than when transitioning from the altered avatar back to the normal avatar without feedback. The implications of these findings for training in virtual reality simulations and for transfer to the real world are discussed, along with the implications for the concept of an embodied action schema. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Subject(s)
Perception , User-Computer Interface , Virtual Reality , Adolescent , Feedback , Female , Humans , Male , Movement/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...