Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Diagn Ther ; 27(4): 537-550, 2023 07.
Article in English | MEDLINE | ID: mdl-37099071

ABSTRACT

BACKGROUND: Circulating tumour DNA (ctDNA) analysis promises to improve the clinical care of people with cancer, address health inequities and guide translational research. This observational cohort study used ctDNA to follow 29 patients with advanced-stage cutaneous melanoma through multiple cycles of immunotherapy. METHOD: A melanoma-specific ctDNA next-generation sequencing (NGS) panel, droplet digital polymerase chain reaction (ddPCR) and mass spectrometry analysis were used to identify ctDNA mutations in longitudinal blood plasma samples from Aotearoa New Zealand (NZ) patients receiving immunotherapy for melanoma. These technologies were used in conjunction to identify the breadth and complexity of tumour genomic information that ctDNA analysis can reliably report. RESULTS: During the course of immunotherapy treatment, a high level of dynamic mutational complexity was identified in blood plasma, including multiple BRAF mutations in the same patient, clinically relevant BRAF mutations emerging through therapy and co-occurring sub-clonal BRAF and NRAS mutations. The technical validity of this ctDNA analysis was supported by high sample analysis-reanalysis concordance, as well as concordance between different ctDNA measurement technologies. In addition, we observed > 90% concordance in the detection of ctDNA when using cell-stabilising collection tubes followed by 7-day delayed processing, compared with standard EDTA blood collection protocols with rapid processing. We also found that the undetectability of ctDNA at a proportion of treatment cycles was associated with durable clinical benefit (DCB). CONCLUSION: We found that multiple ctDNA processing and analysis methods consistently identified complex longitudinal patterns of clinically relevant mutations, adding support for expanded clinical trials of this technology in a variety of oncology settings.


Subject(s)
Circulating Tumor DNA , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/therapy , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Circulating Tumor DNA/genetics , Proto-Oncogene Proteins B-raf/genetics , DNA, Neoplasm , Mutation , Immunotherapy , Melanoma, Cutaneous Malignant
2.
Cancer Res Commun ; 3(1): 31-42, 2023 01.
Article in English | MEDLINE | ID: mdl-36968225

ABSTRACT

Tumor evolution underlies many challenges facing precision oncology, and improving our understanding has the potential to improve clinical care. This study represents a rare opportunity to study tumor heterogeneity and evolution in a patient with an understudied cancer type. A patient with pulmonary atypical carcinoid, a neuroendocrine tumor, metastatic to 90 sites, requested and consented to donate tissues for research. 42 tumor samples collected at rapid autopsy from 14 anatomically distinct sites were analyzed through DNA whole-exome sequencing and RNA sequencing, and five analyzed through linked-read sequencing. Targeted DNA sequencing was completed on two clinical tissue biopsies and one blood plasma sample. Chromosomal alterations and gene variants accumulated over time, and specific chromosomal alterations preceded the single predicted gene driver variant (ARID1A). At the time of autopsy, all sites shared the gain of one copy of Chr 5, loss of one copy of Chr 6 and 21, chromothripsis of one copy of Chr 11, and 39 small variants. Two tumor clones (carrying additional variants) were detected at metastatic sites, and occasionally in different regions of the same organ (e.g., within the pancreas). Circulating tumor DNA (ctDNA) sequencing detected shared tumor variants in the blood plasma and captured marked genomic heterogeneity, including all metastatic clones but few private tumor variants. This study describes genomic tumor evolution and dissemination of a pulmonary atypical carcinoid donated by a single generous patient. It highlights the critical role of chromosomal alterations in tumor initiation and explores the potential of ctDNA analysis to represent genomically heterogeneous disease. Significance: DNA sequencing data from tumor samples and blood plasma from a single patient highlighted the critical early role of chromosomal alterations in atypical carcinoid tumor development. Common tumor variants were readily detected in the blood plasma, unlike emerging tumor variants, which has implications for using ctDNA to capture cancer evolution.


Subject(s)
Carcinoid Tumor , Carcinoma, Neuroendocrine , Lung Neoplasms , Humans , Biomarkers, Tumor/genetics , Precision Medicine , Lung Neoplasms/genetics , Genomics , Carcinoid Tumor/genetics
3.
J Invest Dermatol ; 143(7): 1168-1177.e2, 2023 07.
Article in English | MEDLINE | ID: mdl-36736454

ABSTRACT

Merkel cell carcinoma is a rare, aggressive skin tumor initiated by polyomavirus integration or UV light DNA damage. In New Zealand, there is a propensity toward the UV-driven form (31 of 107, 29% virus positive). Using archival formalin-fixed, paraffin-embedded tissues, we report targeted DNA sequencing covering 246 cancer genes on 71 tumor tissues and 38 nonmalignant tissues from 37 individuals, with 33 of 37 being negative for the virus. Somatic variants of New Zealand virus-negative Merkel cell carcinomas partially overlapped with those reported overseas, including TP53 variants in all tumors and RB1, LRP1B, NOTCH1, and EPHA3/7 variants each found in over half of the cohort. Variants in genes not analyzed or reported in previous studies were also found. Cataloging variants in TP53 and RB1 from published datasets revealed a broad distribution across these genes. Chr 1p gain and Chr 3p loss were identified in around 50% of New Zealand virus-negative Merkel cell carcinomas, and RB1 loss of heterozygosity was found in 90% of cases. Copy number variants accumulate in most metastases. Virus-negative Merkel cell carcinomas have complex combinations of somatic DNA-sequence variants and copy number variants. They likely carry the small genomic changes permissive for metastasis from early tumor development; however, chromosomal alterations may contribute to driving metastatic progression.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Humans , Carcinoma, Merkel Cell/pathology , Mutation , Skin Neoplasms/genetics , Oncogenes , Chromosome Aberrations , Merkel cell polyomavirus/genetics , Polyomavirus Infections/genetics , Tumor Virus Infections/genetics
4.
Cancers (Basel) ; 13(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499137

ABSTRACT

Outstanding questions plaguing oncologists, centred around tumour evolution and heterogeneity, include the development of treatment resistance, immune evasion, and optimal drug targeting strategies. Such questions are difficult to study in limited cancer tissues collected during a patient's routine clinical care, and may be better investigated in the breadth of cancer tissues that may be permissible to collect during autopsies. We are starting to better understand key tumour evolution challenges based on advances facilitated by autopsy studies completed to date. This review article explores the great progress in understanding that cancer tissues collected at autopsy have already enabled, including the shared origin of metastatic cells, the importance of early whole-genome doubling events for amplifying genes needed for tumour survival, and the creation of a wealth of tissue resources powered to answer future questions, including patient-derived xenografts, cell lines, and a wide range of banked tissues. We also highlight the future role of these programmes in advancing our understanding of cancer evolution. The research autopsy provides a special opportunity for cancer patients to give the ultimate gift-to selflessly donate their tissues towards better cancer care.

5.
Clin Breast Cancer ; 20(2): 108-116, 2020 04.
Article in English | MEDLINE | ID: mdl-31607655

ABSTRACT

INTRODUCTION: Circulating biomarkers have been increasingly used in the clinical management of breast cancer. The present study evaluated whether RNAs and a protein present in the plasma of patients with breast cancer might have utility as prognostic biomarkers complementary to existing clinical tests. PATIENTS AND METHODS: We performed microarray profiling of small noncoding RNAs in plasma samples from 30 patients with breast cancer and 10 control individuals. Two small noncoding RNAs, including microRNA (miR)-923, were selected and quantified in plasma samples from an evaluation cohort of 253 patients with breast cancer, using droplet digital polymerase chain reaction. We also measured cancer antigen (CA) 15-3 protein levels in these samples. Cox regression survival analysis was used to determine which markers were associated with patient prognosis. RESULTS: As independent markers of prognosis, the plasma levels of miR-923 and CA 15-3 at the time of surgery for breast cancer were significantly associated with prognosis, irrespective of treatment (Cox proportional hazards, P = 3.9 × 10-3 and 1.9 × 10-9, respectively). After building a multivariable model with standard clinical and pathological features, the addition of miR-923 and CA 15-3 information into the model resulted in a significantly better predictor of disease recurrence in patients, irrespective of treatment, compared with the use of clinicopathological data alone (area under the curve at 3 years, 0.858 vs. 0.770 with clinicopathological markers only; P = .017). CONCLUSION: We propose that the plasma levels of miR-923 and CA 15-3, combined with standard clinicopathological predictors, could be used as a preoperative, noninvasive estimate of patient prognosis to identify which women might need more aggressive treatment or closer surveillance after surgery for breast cancer.


Subject(s)
Biomarkers, Tumor/blood , Breast Neoplasms/surgery , Cell-Free Nucleic Acids/blood , Neoplasm Recurrence, Local/epidemiology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/pathology , Case-Control Studies , Cell-Free Nucleic Acids/metabolism , Disease-Free Survival , Female , Gene Expression Profiling , Healthy Volunteers , Humans , Kaplan-Meier Estimate , Liquid Biopsy/methods , Mastectomy , MicroRNAs/blood , Middle Aged , Mucin-1/blood , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/prevention & control , Oligonucleotide Array Sequence Analysis , Predictive Value of Tests , Prognosis , ROC Curve , Risk Assessment/methods
6.
N Z Med J ; 132(1503): 83-92, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31581185

ABSTRACT

Genomic analysis of tissues from rapid autopsy programmes has transformed our understanding of cancer. However, these programmes are not yet established in New Zealand. Our neuroendocrine tumour research group, NETwork!, received a request from a patient wishing to donate tumour tissues post-mortem. This viewpoint article summarises the ethical, logistical and social process undertaken to accept this patient's generous donation, and highlights the scientific and educational value of such a gift.


Subject(s)
Genetic Research , Neoplasms/genetics , Patient Participation , Pharmacogenomic Variants , Specimen Handling , Tissue Banks , Clinical Protocols , Databases, Genetic , Genetic Heterogeneity , Humans , Neoplasms/therapy , New Zealand , Patient Participation/legislation & jurisprudence , Patient Participation/methods , Specimen Handling/ethics , Specimen Handling/methods , Tissue Banks/ethics , Tissue Banks/legislation & jurisprudence , Tissue Banks/organization & administration
7.
NPJ Genom Med ; 3: 18, 2018.
Article in English | MEDLINE | ID: mdl-30062048

ABSTRACT

Pancreatic neuroendocrine tumors (pNETs) are uncommon cancers arising from pancreatic islet cells. Here we report the analysis of gene mutation, copy number, and RNA expression of 57 sporadic well-differentiated pNETs. pNET genomes are dominated by aneuploidy, leading to concordant changes in RNA expression at the level of whole chromosomes and chromosome segments. We observed two distinct patterns of somatic pNET aneuploidy that are associated with tumor pathology and patient prognosis. Approximately 26% of the patients in this series had pNETs with genomes characterized by recurrent loss of heterozygosity (LoH) of 10 specific chromosomes, accompanied by bi-allelic MEN1 inactivation and generally poor clinical outcome. Another ~40% of patients had pNETs that lacked this recurrent LoH pattern but had chromosome 11 LoH, bi-allelic MEN1 inactivation, and universally good clinical outcome. The somatic aneuploidy allowed pathogenic germline variants (e.g., ATM) to be expressed unopposed, with RNA expression patterns showing inactivation of downstream tumor suppressor pathways. No prognostic associations were found with tumor morphology, single gene mutation, or expression of RNAs reflecting the activity of immune, differentiation, proliferative or tumor suppressor pathways. In pNETs, single gene mutations appear to be less important than aneuploidy, with MEN1 the only statistically significant recurrently mutated driver gene. In addition, only one pNET in the series had clearly actionable single nucleotide variants (SNVs) (in PTEN and FLCN) confirmed by corroborating RNA expression changes. The two clinically relevant patterns of LoH described here define a novel oncogenic mechanism and a plausible route to genomic precision oncology for this tumor type.

8.
Target Oncol ; 12(2): 163-178, 2017 04.
Article in English | MEDLINE | ID: mdl-28138797

ABSTRACT

miRNAs are a well-studied class of non-coding RNAs, predominantly functioning to down-regulate gene expression from messenger RNA (mRNA) in a targeted manner by binding to complementary sequence on the target mRNA. Many miRNAs have been linked to the development of hallmarks of cancer. miRNAs represent valuable therapeutic targets to exploit in the search for novel cancer treatments, due to their ubiquitous expression and their ability to tightly regulate the gene expression of a whole host of genes and pathways in a single hit. The miRNA system may be harnessed for therapeutic use either through replacement of tumour suppressive miRNAs lost in cancer, or through inhibition of oncogenic miRNAs overexpressed in cancer. There is a large body of work investigating optimal systemic and localised delivery strategies, and while miRNA therapeutics show promise, it is clear that further developments to delivery strategies may be required to allow safe translation of miRNAs to the clinic. The information gleaned from miRNA signatures as biomarkers is already proving invaluable in the fight to better understand and treat individual tumours, and there is great promise to the applications of these small, but mighty molecules in the future of cancer therapeutics.


Subject(s)
MicroRNAs/genetics , Neoplasms/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...