Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Immun Ageing ; 20(1): 25, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291596

ABSTRACT

Aging is a gradual, continuous series of natural changes in biological, physiological, immunological, environmental, psychological, behavioral, and social processes. Aging entails changes in the immune system characterized by a decrease in thymic output of naïve lymphocytes, an accumulated chronic antigenic stress notably caused by chronic infections such as cytomegalovirus (CMV), and immune cell senescence with acquisition of an inflammatory senescence-associated secretory phenotype (SASP). For this reason, and due to the SASP originating from other tissues, aging is commonly accompanied by low-grade chronic inflammation, termed "inflammaging". After decades of accumulating evidence regarding age-related processes and chronic inflammation, the domain now appears mature enough to allow an integrative reinterpretation of old data. Here, we provide an overview of the topics discussed in a recent workshop "Aging and Chronic Inflammation" to which many of the major players in the field contributed. We highlight advances in systematic measurement and interpretation of biological markers of aging, as well as their implications for human health and longevity and the interventions that can be envisaged to maintain or improve immune function in older people.

2.
J Gerontol A Biol Sci Med Sci ; 76(11): 1895-1905, 2021 10 13.
Article in English | MEDLINE | ID: mdl-33406219

ABSTRACT

Cellular senescence contributes to age-related disorders including physical dysfunction, disabilities, and mortality caused by tissue inflammation and damage. Senescent cells accumulate in multiple tissues with aging and at etiological sites of multiple chronic disorders. The senolytic drug combination, Dasatinib plus Quercetin (D+Q), is known to reduce senescent cell abundance in aged mice. However, the effects of long-term D+Q treatment on intestinal senescent cell and inflammatory burden and microbiome composition in aged mice remain unknown. Here, we examine the effect of D+Q on senescence (p16Ink4a and p21Cip1) and inflammation (Cxcl1, Il1ß, Il6, Mcp1, and Tnfα) markers in small (ileum) and large (caecum and colon) intestine in aged mice (n = 10) compared to age-matched placebo-treated mice (n = 10). Additionally, we examine microbial composition along the intestinal tract in these mice. D+Q-treated mice show significantly lower senescent cell (p16 and p21 expression) and inflammatory (Cxcl1, Il1ß, Il6, Mcp1, and Tnfα expression) burden in small and large intestine compared with control mice. Further, we find specific microbial signatures in ileal, cecal, colonic, and fecal regions that are distinctly modulated by D+Q, with modulation being most prominent in small intestine. Further analyses reveal specific correlation of senescence and inflammation markers with specific microbial signatures. Together, these data demonstrate that the senolytic treatment reduces intestinal senescence and inflammation while altering specific microbiota signatures and suggest that the optimized senolytic regimens might improve health via reducing intestinal senescence, inflammation, and microbial dysbiosis in older subjects.


Subject(s)
Dasatinib , Gastrointestinal Microbiome , Quercetin , Animals , Biomarkers , Cellular Senescence/drug effects , Dasatinib/pharmacology , Inflammation/drug therapy , Interleukin-6 , Intestines , Mice , Quercetin/pharmacology , Senotherapeutics , Tumor Necrosis Factor-alpha
3.
Spine (Phila Pa 1976) ; 42(20): 1521-1528, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28570296

ABSTRACT

STUDY DESIGN: ADAMTS5-deficient and wild type (WT) mice were chronically exposed to tobacco smoke to investigate effects on intervertebral disc degeneration (IDD). OBJECTIVE: The aim of this study was to demonstrate a role for ADAMTS5 in mediating tobacco smoking-induced IDD. SUMMARY OF BACKGROUND DATA: We previously demonstrated that chronic tobacco smoking causes IDD in mice because, in part, of proteolytic destruction of disc aggrecan. However, it was unknown which matrix proteinase(s) drive these detrimental effects. METHODS: Three-month-old WT (C57BL/6) and ADAMTS5 mice were chronically exposed to tobacco smoke (four cigarettes/day, 5 day/week for 6 months). ADAMTS-mediated cleavage of disc aggrecan was analyzed by Western blot. Disc total glycosaminoglycan (GAG) content was assessed by dimethyl methylene blue assay and safranin O/fast green histology. Vertebral osteoporosity was measured by microcomputed tomography. Human nucleus pulposus (hNP) cell cultures were also exposed directly to tobacco smoke extract (TSE), a condensate containing the water-soluble compounds inhaled by smokers, to measure ADAMTS5 expression and ADAMTS-mediated cleavage of aggrecan. Activation of nuclear factor (NF)-κB, a family of transcription factors essential for modulating the cellular response to stress, was measured by immunofluorescence assay. RESULTS: Genetic depletion of ADAMTS5 prevented vertebral bone loss, substantially reduced loss of disc GAG content, and completely obviated ADAMTS-mediated proteolysis of disc aggrecan within its interglobular domain (IGD) in mice following exposure to tobacco smoke. hNP cell cultures exposed to TSE also resulted in upregulation of ADAMTS5 protein expression and a concomitant increase in ADAMTS-mediated cleavage within aggrecan IGD. Activation of NF-κB, known to be required for ADAMTS5 gene expression, was observed in both TSE-treated hNP cell cultures and disc tissue of tobacco smoke-exposed mice. CONCLUSION: The findings demonstrate that ADAMTS5 is the primary aggrecanase mediating smoking-induced disc aggrecanolysis and IDD. Mouse models of chronic tobacco smoking are important and useful for probing the mechanisms of disc aggrecan catabolism and IDD. LEVEL OF EVIDENCE: N/A.


Subject(s)
ADAMTS5 Protein/deficiency , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Tobacco Smoking/adverse effects , Tobacco Smoking/metabolism , ADAMTS5 Protein/biosynthesis , Adult , Animals , Cells, Cultured , Female , Humans , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/prevention & control , Male , Mice , Mice, Inbred C57BL , Middle Aged , NF-kappa B/metabolism , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Tobacco Smoking/pathology
SELECTION OF CITATIONS
SEARCH DETAIL