Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
BMJ Open ; 14(3): e076142, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490660

ABSTRACT

OBJECTIVE: Dipeptidase-1 (DPEP-1) is a recently discovered leucocyte adhesion receptor for neutrophils and monocytes in the lungs and kidneys and serves as a potential therapeutic target to attenuate inflammation in moderate-to-severe COVID-19. We aimed to evaluate the safety and efficacy of the DPEP-1 inhibitor, LSALT peptide, to prevent specific organ dysfunction in patients hospitalised with COVID-19. DESIGN: Phase 2a randomised, placebo-controlled, double-blinded, trial. SETTING: Hospitals in Canada, Turkey and the USA. PARTICIPANTS: A total of 61 subjects with moderate-to-severe COVID-19. INTERVENTIONS: Randomisation to LSALT peptide 5 mg intravenously daily or placebo for up to 14 days. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary endpoint was the proportion of subjects alive and free of respiratory failure and/or the need for renal replacement therapy (RRT). Numerous secondary and exploratory endpoints were assessed including ventilation-free days, and changes in kidney function or serum biomarkers. RESULTS: At 28 days, 27 (90.3%) and 28 (93.3%) of subjects in the placebo and LSALT groups were free of respiratory failure and the need for RRT (p=0.86). On days 14 and 28, the number of patients still requiring more intensive respiratory support (O2 ≥6 L/minute, non-invasive or invasive mechanical ventilation or extracorporeal membrane oxygenation) was 6 (19.4%) and 3 (9.7%) in the placebo group versus 2 (6.7%) and 2 (6.7%) in the LSALT group, respectively (p=0.14; p=0.67). Unadjusted analysis of ventilation-free days demonstrated 22.8 days for the LSALT group compared with 20.9 in the placebo group (p=0.4). LSALT-treated subjects had a significant reduction in the fold expression from baseline to end of treatment of serum CXCL10 compared with placebo (p=0.02). Treatment-emergent adverse events were similar between groups. CONCLUSION: In a Phase 2 study, LSALT peptide was demonstrated to be safe and tolerated in patients hospitalised with moderate-to-severe COVID-19. TRIAL REGISTRATION NUMBER: NCT04402957.


Subject(s)
Acute Kidney Injury , COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , SARS-CoV-2 , Proof of Concept Study , Double-Blind Method , Respiratory Distress Syndrome/prevention & control , Acute Kidney Injury/prevention & control , Treatment Outcome
2.
Nat Cancer ; 4(10): 1406-1407, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37880415
3.
Sci Adv ; 8(5): eabm0142, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35108057

ABSTRACT

The mechanisms that drive leukocyte recruitment to the kidney are incompletely understood. Dipeptidase-1 (DPEP1) is a major neutrophil adhesion receptor highly expressed on proximal tubular cells and peritubular capillaries of the kidney. Renal ischemia reperfusion injury (IRI) induces robust neutrophil and monocyte recruitment and causes acute kidney injury (AKI). Renal inflammation and the AKI phenotype were attenuated in Dpep1-/- mice or mice pretreated with DPEP1 antagonists, including the LSALT peptide, a nonenzymatic DPEP1 inhibitor. DPEP1 deficiency or inhibition primarily blocked neutrophil adhesion to peritubular capillaries and reduced inflammatory monocyte recruitment to the kidney after IRI. CD44 but not ICAM-1 blockade also decreased neutrophil recruitment to the kidney during IRI and was additive to DPEP1 effects. DPEP1, CD44, and ICAM-1 all contributed to the recruitment of monocyte/macrophages to the kidney following IRI. These results identify DPEP1 as a major leukocyte adhesion receptor in the kidney and potential therapeutic target for AKI.


Subject(s)
Acute Kidney Injury , Dipeptidases/metabolism , Reperfusion Injury , Acute Kidney Injury/etiology , Animals , Female , GPI-Linked Proteins/metabolism , Humans , Inflammation/complications , Male , Mice , Mice, Inbred C57BL
4.
Nat Methods ; 18(11): 1294-1303, 2021 11.
Article in English | MEDLINE | ID: mdl-34725485

ABSTRACT

Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.


Subject(s)
Biomarkers, Tumor/genetics , Cell Proliferation , Knowledge Bases , Neoplasms/pathology , Software , Spheroids, Cellular/pathology , Tumor Microenvironment , Cell Culture Techniques/methods , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/classification , Neoplasms/metabolism , RNA-Seq , Reproducibility of Results , Spheroids, Cellular/immunology , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
5.
Nat Commun ; 11(1): 4997, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020472

ABSTRACT

Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/metabolism , Glioma/pathology , Interleukin-33/metabolism , Animals , Brain Neoplasms/mortality , Carcinogenesis , Cell Nucleus/metabolism , Cytokines/metabolism , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/pathology , Glioma/mortality , Humans , Inflammation , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, SCID , Microglia , Survival Analysis , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Tumor Microenvironment/immunology
6.
Biomaterials ; 252: 120105, 2020 09.
Article in English | MEDLINE | ID: mdl-32417652

ABSTRACT

Despite extensive molecular characterization, human glioblastoma remains a fatal disease with survival rates measured in months. Little improvement is seen with standard surgery, radiotherapy and chemotherapy. Clinical progress is hampered by the inability to detect and target glioblastoma disease reservoirs based on a diffuse invasive pattern and the presence of molecular and phenotypic heterogeneity. The goal of this study was to target the invasive and stem-like glioblastoma cells that evade first-line treatments using agents capable of delivering imaging enhancers or biotherapeutic cargo. To accomplish this, a combinatorial phage display library was biopanned against glioblastoma cell model systems that accurately recapitulate the intra- and inter-tumor heterogeneity and infiltrative nature of the disease. Candidate peptides were screened for specificity and ability to target glioblastoma cells in vivo. Cargo-conjugated peptides delivered contrast-enhancing agents to highly infiltrative tumor populations in intracranial xenograft models without the obvious need for blood brain barrier disruption. Simultaneous use of five independent targeting peptides provided greater coverage of this complex tumor and selected peptides have the capacity to deliver a therapeutic cargo (oncolytic virus VSVΔM51) to the tumor cells in vivo. Herein, we have identified a series of peptides with utility as an innovative platform to assist in targeting glioblastoma for the purpose of diagnostic or prognostic imaging, image-guided surgery, and/or improved delivery of therapeutic agents to glioblastoma cells implicated in disease relapse.


Subject(s)
Brain Neoplasms , Glioblastoma , Oncolytic Viruses , Animals , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Peptides
7.
Cell Stress ; 5(1): 19-22, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33447733

ABSTRACT

IL-33, a member of the IL-1 cytokine family has been shown to play a dual role within the body. First IL-33, similar to other IL-1 family members, is a secreted cytokine that binds to the cell surface receptor ST2 to induce a number of cell signaling pathways. Second, IL-33 enters the nucleus where it binds chromatin and directs transcriptional control of an array of growth factors and cytokines. Consistent with its complex cellular regulation, IL-33 mediates an array of biological functions by acting on a wide range of innate and adaptive immune cells. Recently, we found that IL-33 is expressed in a large number of human glioma patient specimens where its expression within the tumor correlates with the increased presence of Iba+ cells that include both resident microglia and recruited monocyte and macrophages. Strikingly, glioma derived expression of IL-33 correlates with a dramatic decrease in overall survival of tumor-bearing animals and thus supports its role as an influential factor in gliomagenesis. Notably however, when the nuclear localization function of IL-33 is crippled, the tumor microenvironment is programmed to be anti-tumorigenic and results in prolonged overall survival suggesting that when educated appropriately this could represent a novel therapeutic strategy for glioma (De Boeck et al. (2020), Nat Commun, doi: 10.1038/s41467-020-18569-4).

8.
Proc Natl Acad Sci U S A ; 116(38): 19098-19108, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31471491

ABSTRACT

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Genomics/methods , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Tumor Microenvironment/genetics , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Brain Neoplasms/genetics , Case-Control Studies , Cell Proliferation , DNA Methylation , Drug Resistance, Neoplasm , Female , Gene Expression Profiling , Glioblastoma/genetics , Humans , Male , Mice , Mice, SCID , Middle Aged , Neoplastic Stem Cells/metabolism , Transcriptome , Tumor Cells, Cultured , Whole Genome Sequencing , Xenograft Model Antitumor Assays
9.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442408

ABSTRACT

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Subject(s)
Dipeptidases/metabolism , Neutrophils/physiology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Animals , Cilastatin/pharmacology , Cilastatin/therapeutic use , Dipeptidases/antagonists & inhibitors , Dipeptidases/genetics , Disease Models, Animal , Endotoxemia/mortality , Endotoxemia/pathology , Endotoxemia/prevention & control , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/immunology , Liver/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Neutrophil Infiltration/drug effects , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Survival Rate
10.
Nat Commun ; 10(1): 2000, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043608

ABSTRACT

Capicua (Cic) is a transcriptional repressor mutated in the brain cancer oligodendroglioma. Despite its cancer link, little is known of Cic's function in the brain. We show that nuclear Cic expression is strongest in astrocytes and neurons but weaker in stem cells and oligodendroglial lineage cells. Using a new conditional Cic knockout mouse, we demonstrate that forebrain-specific Cic deletion increases proliferation and self-renewal of neural stem cells. Furthermore, Cic loss biases neural stem cells toward glial lineage selection, expanding the pool of oligodendrocyte precursor cells (OPCs). These proliferation and lineage effects are dependent on de-repression of Ets transcription factors. In patient-derived oligodendroglioma cells, CIC re-expression or ETV5 blockade decreases lineage bias, proliferation, self-renewal, and tumorigenicity. Our results identify Cic as an important regulator of cell fate in neurodevelopment and oligodendroglioma, and suggest that its loss contributes to oligodendroglioma by promoting proliferation and an OPC-like identity via Ets overactivity.


Subject(s)
Brain Neoplasms/pathology , Neural Stem Cells/pathology , Oligodendroglioma/pathology , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/metabolism , Animals , Astrocytes/pathology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Female , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Knockout , Neurons/pathology , Oligodendroglia/cytology , Oligodendroglia/pathology , Primary Cell Culture , Prosencephalon/cytology , Prosencephalon/pathology , Repressor Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
12.
Nat Commun ; 9(1): 751, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467448

ABSTRACT

Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that ß-1,3-glucan, a component of the fungal cell wall, binds to NKp30. We further demonstrate that ß-1,3-glucan stimulates granule convergence and polarization, as shown by live cell imaging. Through Src Family Kinase signaling, ß-1,3-glucan increases expression and clustering of NKp30 at the microbial and NK cell synapse to induce perforin release for fungal cytotoxicity. Rather than blocking the interaction between fungi and NK cells, soluble ß-1,3-glucan enhances fungal killing and restores defective cryptococcal killing by NK cells from HIV-positive individuals, implicating ß-1,3-glucan to be both an activating ligand and a soluble PAMP that shapes NK cell host immunity.


Subject(s)
Candida albicans/immunology , Cryptococcus neoformans/immunology , Killer Cells, Natural/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Cell Line , Cell Polarity/immunology , Cytoplasmic Granules/immunology , Cytotoxicity, Immunologic , HIV Infections/immunology , Host-Pathogen Interactions/immunology , Humans , Immunological Synapses/immunology , Ligands , Microscopy, Atomic Force , Natural Cytotoxicity Triggering Receptor 3/immunology , Perforin/immunology , Recombinant Proteins/immunology , Solubility , beta-Glucans/immunology
13.
Sci Rep ; 7(1): 956, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28424476

ABSTRACT

The fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse. In this study we report that exported vesicles from neurons contain CSPα. Extracellular vesicles (EV's) have been implicated in a wide range of functions. However, the functional significance of neural EV's remains to be established. Here we demonstrate that co-expression of CSPα with the disease-associated proteins, polyglutamine expanded protein 72Q huntingtinex°n1 or superoxide dismutase-1 (SOD-1G93A) leads to the cellular export of both 72Q huntingtinex°n1 and SOD-1G93A via EV's. In contrast, the inactive CSPαHPD-AAA mutant does not facilitate elimination of misfolded proteins. Furthermore, CSPα-mediated export of 72Q huntingtinex°n1 is reduced by the polyphenol, resveratrol. Our results indicate that by assisting local lysosome/proteasome processes, CSPα-mediated removal of toxic proteins via EVs plays a central role in synaptic proteostasis and CSPα thus represents a potential therapeutic target for neurodegenerative diseases.


Subject(s)
Extracellular Vesicles/metabolism , HSP40 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Neurons/cytology , Proteostasis , Animals , Cells, Cultured , Humans , Mice , Neurons/metabolism , Protein Folding , Synapses/chemistry , Synapses/metabolism
14.
Cancer Res ; 77(12): 3231-3243, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28416488

ABSTRACT

Oncogenic signaling by NOTCH is elevated in brain tumor-initiating cells (BTIC) in malignant glioma, but the mechanism of its activation is unknown. Here we provide evidence that tenascin-C (TNC), an extracellular matrix protein prominent in malignant glioma, increases NOTCH activity in BTIC to promote their growth. We demonstrate the proximal localization of TNC and BTIC in human glioblastoma specimens and in orthotopic murine xenografts of human BTIC implanted intracranially. In tissue culture, TNC was superior amongst several extracellular matrix proteins in enhancing the sphere-forming capacity of glioma patient-derived BTIC. Exogenously applied or autocrine TNC increased BTIC growth through an α2ß1 integrin-mediated mechanism that elevated NOTCH ligand Jagged1 (JAG1). Microarray analyses and confirmatory PCR and Western analyses in BTIC determined that NOTCH signaling components including JAG1, ADAMTS15, and NICD1/2 were elevated in BITC after TNC exposure. Inhibition of γ-secretase and metalloproteinase proteolysis in the NOTCH pathway, or silencing of α2ß1 integrin or JAG1, reduced the proliferative effect of TNC on BTIC. Collectively, our findings identified TNC as a pivotal initiator of elevated NOTCH signaling in BTIC and define the establishment of a TN-α2ß1-JAG1-NOTCH signaling axis as a candidate therapeutic target in glioma patients. Cancer Res; 77(12); 3231-43. ©2017 AACR.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Neoplastic Stem Cells/pathology , Receptors, Notch/metabolism , Tenascin/metabolism , Animals , Blotting, Western , Brain Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Gene Knockdown Techniques , Glioma/metabolism , Heterografts , Humans , Immunoprecipitation , Mice , Mice, SCID , Neoplastic Stem Cells/metabolism , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , Tenascin/pharmacology
15.
Nat Commun ; 82017 02 15.
Article in English | MEDLINE | ID: mdl-28198370

ABSTRACT

Small-molecule inhibitor of apoptosis (IAP) antagonists, called Smac mimetic compounds (SMCs), sensitize tumours to TNF-α-induced killing while simultaneously blocking TNF-α growth-promoting activities. SMCs also regulate several immunomodulatory properties within immune cells. We report that SMCs synergize with innate immune stimulants and immune checkpoint inhibitor biologics to produce durable cures in mouse models of glioblastoma in which single agent therapy is ineffective. The complementation of activities between these classes of therapeutics is dependent on cytotoxic T-cell activity and is associated with a reduction in immunosuppressive T-cells. Notably, the synergistic effect is dependent on type I IFN and TNF-α signalling. Furthermore, our results implicate an important role for TNF-α-producing cytotoxic T-cells in mediating the anti-cancer effects of immune checkpoint inhibitors when combined with SMCs. Overall, this combinatorial approach could be highly effective in clinical application as it allows for cooperative and complimentary mechanisms in the immune cell-mediated death of cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Interferon-alpha/immunology , Interferon-beta/immunology , Thiazoles/pharmacology , Adaptive Immunity/drug effects , Animals , Antineoplastic Agents/chemical synthesis , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Cell Line, Tumor , Female , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/immunology , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/mortality , Humans , Immunity, Innate/drug effects , Immunologic Memory , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/immunology , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Interferon-beta/genetics , Interferon-beta/pharmacology , Mice , Poly I-C/pharmacology , Signal Transduction , Survival Analysis , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Thiazoles/chemical synthesis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/pharmacology , Vesiculovirus/genetics , Vesiculovirus/immunology , Xenograft Model Antitumor Assays
16.
Biomed Hub ; 2(Suppl 1): 41-43, 2017.
Article in English | MEDLINE | ID: mdl-31988931

ABSTRACT

Personalized (or precision) medicine approaches are currently being introduced in healthcare delivery following the development of new technologies and of novel ways to integrate and analyze various data sources. This editorial describes the efforts invested since 2012 by the Canadian Institutes of Health Research (CIHR) to foster the development and implementation of personalized medicine in Canada. Success stories from past investments as well as future developments are presented from a Canadian perspective.

17.
Mol Ther Oncolytics ; 3: 16005, 2016.
Article in English | MEDLINE | ID: mdl-27626059

ABSTRACT

N-myc oncogene amplification is associated but not present in all cases of high-risk neuroblastoma (NB). Since oncogene expression could often modulate sensitivity to oncolytic viruses, we wanted to examine if N-myc expression status would determine virotherapy efficacy to high-risk NB. We showed that induction of exogenous N-myc in a non-N-myc-amplified cell line background (TET-21N) increased susceptibility to oncolytic vesicular stomatitis virus (mutant VSVΔM51) and alleviated the type I IFN-induced antiviral state. Cells with basal N-myc, on the other hand, were less susceptible to virus-induced oncolysis and established a robust IFN-mediated antiviral state. The same effects were also observed in NB cell lines with and without N-myc amplification. Microarray analysis showed that N-myc overexpression in TET-21N cells downregulated IFN-stimulated genes (ISGs) with known antiviral functions. Furthermore, virus infection caused significant changes in global gene expression in TET-21N cells overexpressing N-myc. Such changes involved ISGs with various functions. Therefore, the present study showed that augmented susceptibility to VSVΔM51 by N-myc at least involves downregulation of ISGs with antiviral functions and alleviation of the IFN-stimulated antiviral state. Our studies suggest the potential utility of N-myc amplification/overexpression as a predictive biomarker of virotherapy response for high-risk NB using IFN-sensitive oncolytic viruses.

18.
Oncotarget ; 7(37): 59360-59376, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27449082

ABSTRACT

Glioblastoma (GBM) is the most lethal and aggressive adult brain tumor, requiring the development of efficacious therapeutics. Towards this goal, we screened five genetically distinct patient-derived brain-tumor initiating cell lines (BTIC) with a unique collection of small molecule epigenetic modulators from the Structural Genomics Consortium (SGC). We identified multiple hits that inhibited the growth of BTICs in vitro, and further evaluated the therapeutic potential of EZH2 and HDAC inhibitors due to the high relevance of these targets for GBM. We found that the novel SAM-competitive EZH2 inhibitor UNC1999 exhibited low micromolar cytotoxicity in vitro on a diverse collection of BTIC lines, synergized with dexamethasone (DEX) and suppressed tumor growth in vivo in combination with DEX. In addition, a unique brain-penetrant class I HDAC inhibitor exhibited cytotoxicity in vitro on a panel of BTIC lines and extended survival in combination with TMZ in an orthotopic BTIC model in vivo. Finally, a combination of EZH2 and HDAC inhibitors demonstrated synergy in vitro by augmenting apoptosis and increasing DNA damage. Our findings identify key epigenetic modulators in GBM that regulate BTIC growth and survival and highlight promising combination therapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Drug Screening Assays, Antitumor/methods , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Glioblastoma/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Pyridones/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Dexamethasone/therapeutic use , Drug Synergism , Drug Therapy, Combination , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Mice, SCID , Molecular Targeted Therapy , Pyridones/pharmacology , Small Molecule Libraries , Xenograft Model Antitumor Assays
19.
Clin Cancer Res ; 22(15): 3860-75, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27006494

ABSTRACT

PURPOSE: Glioblastoma is one of the most lethal cancers in humans, and with existing therapy, survival remains at 14.6 months. Current barriers to successful treatment include their infiltrative behavior, extensive tumor heterogeneity, and the presence of a stem-like population of cells, termed brain tumor-initiating cells (BTIC) that confer resistance to conventional therapies. EXPERIMENTAL DESIGN: To develop therapeutic strategies that target BTICs, we focused on a repurposing approach that explored already-marketed (clinically approved) drugs for therapeutic potential against patient-derived BTICs that encompass the genetic and phenotypic heterogeneity of glioblastoma observed clinically. RESULTS: Using a high-throughput in vitro drug screen, we found that montelukast, clioquinol, and disulfiram (DSF) were cytotoxic against a large panel of patient-derived BTICs. Of these compounds, disulfiram, an off-patent drug previously used to treat alcoholism, in the presence of a copper supplement, showed low nanomolar efficacy in BTICs including those resistant to temozolomide and the highly infiltrative quiescent stem-like population. Low dose DSF-Cu significantly augmented temozolomide activity in vitro, and importantly, prolonged in vivo survival in patient-derived BTIC models established from both newly diagnosed and recurrent tumors. Moreover, we found that in addition to acting as a potent proteasome inhibitor, DSF-Cu functionally impairs DNA repair pathways and enhances the effects of DNA alkylating agents and radiation. These observations suggest that DSF-Cu inhibits proteasome activity and augments the therapeutic effects of DNA-damaging agents (temozolomide and radiation). CONCLUSIONS: DSF-Cu should be considered as an adjuvant therapy for the treatment of patients with glioblastoma in both newly diagnosed and recurrent settings. Clin Cancer Res; 22(15); 3860-75. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Copper/pharmacology , Dacarbazine/analogs & derivatives , Disulfiram/pharmacology , Glioblastoma/metabolism , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Repair , Dacarbazine/pharmacology , Disease Models, Animal , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Drug Synergism , Female , Gene Expression Profiling , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , High-Throughput Screening Assays , Humans , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Proteasome Endopeptidase Complex/metabolism , Temozolomide , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
20.
Neuro Oncol ; 17(8): 1095-105, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25646025

ABSTRACT

BACKGROUND: Tenascin-C (TNC), an extracellular matrix protein overexpressed in malignant gliomas, stimulates invasion of conventional glioma cell lines (U251, U87). However, there is a dearth of such information on glioma stemlike cells. Here, we have addressed whether and how TNC may regulate the invasiveness of brain tumor-initiating cells (BTICs) that give rise to glioma progenies. METHODS: Transwell inserts coated with extracellular matrix proteins were used to determine the role of TNC in BTIC invasion. Microarray analysis, lentiviral constructs, RNA interference-mediated knockdown, and activity assay ascertained the role of proteases in TNC-stimulated BTIC invasion in culture. Involvement of proteases was validated using orthotopic brain xenografts in mice. RESULTS: TNC stimulated BTIC invasiveness in a metalloproteinase-dependent manner. A global gene expression screen identified the metalloproteinase ADAM-9 as a potential regulator of TNC-stimulated BTIC invasiveness, and this was corroborated by an increase of ADAM-9 protein in 4 glioma patient-derived BTIC lines. Notably, RNA interference to ADAM-9, as well as inhibition of mitogen-activated protein kinase 8 (c-Jun NH2-terminal kinase), attenuated TNC-stimulated ADAM-9 expression, proteolytic activity, and BTIC invasiveness. The relevance of ADAM-9 to tumor invasiveness was validated using resected human glioblastoma specimens and orthotopic xenografts where elevation of ADAM-9 and TNC expression was prominent at the invasive front of the tumor. CONCLUSIONS: This study has identified TNC as a promoter of the invasiveness of BTICs through a mechanism involving ADAM-9 proteolysis via the c-Jun NH2-terminal kinase pathway.


Subject(s)
ADAM Proteins/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Membrane Proteins/metabolism , Neoplastic Stem Cells/pathology , Tenascin/physiology , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/metabolism , Humans , MAP Kinase Signaling System , Mice , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Tenascin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...