Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurochem ; 160(4): 469-481, 2022 02.
Article in English | MEDLINE | ID: mdl-34928513

ABSTRACT

Alcohol exposure alters the signaling of the serotoninergic system, which is involved in alcohol consumption, reward, and dependence. In particular, dysregulation of serotonin receptor type 1A (5-HT1AR) is associated with alcohol intake and withdrawal-induced anxiety-like behavior in rodents. However, how ethanol regulates 5-HT1AR activity and cell surface availability remains elusive. Using neuroblastoma 2a cells stably expressing human 5-HT1ARs tagged with hemagglutinin at the N-terminus, we found that prolonged ethanol exposure (18 h) reduced the basal surface levels of 5-HT1ARs in a concentration-dependent manner. This reduction is attributed to both enhanced receptor internalization and attenuated receptor recycling. Moreover, constitutive 5-HT1AR internalization in ethanol naïve cells was blocked by concanavalin A (ConA) but not nystatin, suggesting clathrin-dependent 5-HT1AR internalization. In contrast, constitutive 5-HT1AR internalization in ethanol-treated cells was blocked by nystatin but not by ConA, indicating that constitutive 5-HT1AR internalization switched from a clathrin- to a caveolin-dependent pathway. Dynasore, an inhibitor of dynamin, blocked 5-HT1AR internalization in both vehicle- and ethanol-treated cells. Furthermore, ethanol exposure enhanced the activity of dynamin I via dephosphorylation and reduced myosin Va levels, which may contribute to increased internalization and reduced recycling of 5-HT1ARs, respectively. Our findings suggest that prolonged ethanol exposure not only alters the endocytic trafficking of 5-HT1ARs but also the mechanism by which constitutive 5-HT1AR internalization occurs.


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Cell Line , Clathrin/metabolism , Concanavalin A/pharmacology , Dose-Response Relationship, Drug , Dynamins/metabolism , Endocytosis , Humans , Hydrazones/pharmacology , Nystatin/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , rab GTP-Binding Proteins/metabolism
2.
J Neurosci Res ; 99(3): 827-842, 2021 03.
Article in English | MEDLINE | ID: mdl-33175436

ABSTRACT

The neural mechanisms that underlie responses to drugs of abuse are complex, and impacted by a number of neuromodulatory peptides. Within the past 10 years it has been discovered that several of the receptors for neuromodulators are enriched in the primary cilia of neurons. Primary cilia are microtubule-based organelles that project from the surface of nearly all mammalian cells, including neurons. Despite what we know about cilia, our understanding of how cilia regulate neuronal function and behavior is still limited. The primary objective of this study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to amphetamine. To test the consequences of cilia loss on amphetamine-induced locomotor activity we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. Cilia loss had no effect on baseline locomotion in either mouse strain. In mice lacking cilia on dopaminergic neurons, locomotor activity compared to wild- type mice was reduced in both sexes in response to acute administration of 3.0 mg/kg amphetamine. In contrast, changes in the locomotor response to amphetamine in mice lacking cilia on GAD2-GABAergic neurons were primarily driven by reductions in locomotor activity in males. Following repeated amphetamine administration (1.0 mg kg-1  day-1 over 5 days), mice lacking cilia on GAD2-GABAergic neurons exhibited enhanced sensitization of the locomotor stimulant response to the drug, whereas mice lacking cilia on dopaminergic neurons did not differ from wild-type controls. These results indicate that cilia play neuron-specific roles in both acute and neuroplastic responses to psychostimulant drugs of abuse.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , Cilia/drug effects , Cilia/pathology , Motor Activity/drug effects , Animals , Cilia/genetics , Dopamine , Dopaminergic Neurons/pathology , Female , Male , Mice , Mice, Knockout , Neuronal Plasticity
3.
Brain Res ; 1713: 32-41, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30543771

ABSTRACT

The mesocorticolimbic dopamine pathway is generally considered to be a reward pathway. While shortsighted, there is a strong basis for this view of dopamine function. Here, we first describe the role of phasic dopamine release events in reward seeking. We then explain why these release events are being reconsidered as value signals and how we applied behavioral economics to confirm they play a causal role in the valuation of reward. Just because dopamine release can function as a dopamine reward value signal however, does not imply that dopamine is solely a reward molecule. Rather, mesocorticolimbic dopamine appears to mediate many adaptive behaviors, including: reward seeking, avoidance, escape and fear-associated conditioned freezing. While more studies are needed before a consensus is reached on when, where and how dopamine mediates aversively-motivated behavior, its involvement is almost irrefutable. Thus, we next describe the role dopamine plays in these ethologically-relevant defensive behaviors. We conclude by describing our recent behavioral economics results that reveal a causal role for dopamine in the valuation of avoidance.


Subject(s)
Avoidance Learning/drug effects , Dopamine/metabolism , Dopamine/physiology , Animals , Behavior, Animal/drug effects , Brain/drug effects , Economics, Behavioral , Models, Animal , Motivation/drug effects , Nucleus Accumbens/metabolism , Rats , Reward
SELECTION OF CITATIONS
SEARCH DETAIL