Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912778

ABSTRACT

Pancreatic islet transplantation is an emerging treatment for type I diabetes; however, it is limited by donor matching and availability. Porcine islet xenotransplantation offers a promising alternative to allotransplantation, with the potential for large-scale production of on-demand, functional islets. The yield and viability of isolated islets is highly susceptible to the quality of the donor pancreas and the method of procurement, particularly the duration of warm-ischemia time. To improve organ preservation and subsequent islet yield and viability, we have developed a protocol for surgical perfusion and resection of the porcine pancreas. This protocol employs direct infrarenal aortic cannulation and organ perfusion to both minimize warm-ischemia time and simplify the procedure for operators who do not have extensive surgical expertise. Subsequent arterial perfusion of the pancreas via the aorta flushes stagnant blood from the microvasculature, thereby reducing thrombosis and oxidative damage to the tissue. This manuscript provides a detailed protocol for surgical perfusion and resection of the porcine pancreas, followed by islet isolation and purification.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Pancreas , Perfusion , Animals , Swine , Islets of Langerhans/cytology , Islets of Langerhans Transplantation/methods , Perfusion/methods , Pancreas/surgery , Pancreas/blood supply , Pancreas/cytology , Transplantation, Heterologous/methods
2.
JTCVS Open ; 18: 80-86, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38690437

ABSTRACT

Objective: Open decannulation from femoral venoarterial extracorporeal membrane oxygenation (VA-ECMO) carries high risk of morbidity, including groin wound infection. This study evaluated the impact of percutaneous decannulation on rates of groin wound infection in patients decannulated from femoral VA-ECMO. Methods: Between January 1, 2022, and April 30, 2023, 47 consecutive patients received percutaneous femoral VA-ECMO and survived to decannulation. A percutaneous suture-mediated closure device was used for decannulation in patients with relatively smaller arterial cannulas. Patients with larger arterial cannulas or unsuccessful percutaneous closures underwent surgical cutdown and repair of the femoral artery. The primary outcome was arterial site wound infection following decannulation. Results: Among the 47 patients who survived to decannulation from VA-ECMO, 21 underwent percutaneous decannulation and 27 underwent surgical cutdown. One patient underwent 2 VA-ECMO runs, one with percutaneous decannulation and one with surgical cutdown. Percutaneous decannulation was attempted in 22 patients, with 21 of 22 (95.5%) success rate. Decannulation procedure length was significantly shorter in the percutaneous group (79 minutes vs 148 minutes, P = .0001). The percutaneous group had significantly reduced rates of groin wound complications (0% vs 40.7%, P = .001) and groin wound infections (0% vs 22.2%, P = .03) when compared with the surgical cutdown group. Three patients (14.3%) in the percutaneous group experienced vascular complications, including pseudoaneurysm at the distal perfusion catheter site and nonocclusive thrombus of the common femoral artery. Conclusions: Percutaneous decannulation may reduce decannulation procedure length and rate of groin wound infection in patients who survive to decannulation from VA-ECMO.

3.
Biomaterials ; 308: 122563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574456

ABSTRACT

A vascular anastomosis is a critical surgical skill that involves connecting blood vessels. Traditional handsewn techniques can be challenging and resource intensive. To address these issues, we have developed a unique sutureless anastomotic device called Vaso-Lock. This intraluminal device connects free vascular ends using anchors to maintain traction and enable a rapid anastomosis. We tested the anastomotic capability of Vaso-Locks in a pig common carotid-internal jugular arteriovenous model. The use of Vaso-Lock allowed us to accomplish this procedure in less than 10 min, in contrast to the approximately 40 min required for a handsewn anastomosis. The Vaso-Lock effectively maintained patency for at least 6 weeks without causing significant tissue damage. Histological analysis revealed that the device was successfully incorporated into the arterial wall, promoting a natural healing process. Additionally, organ evaluations indicated no adverse effects from using the Vaso-Lock. Our findings support the safety and effectiveness of the Vaso-Lock for arteriovenous anastomosis in pigs, with potential applicability for translation to humans. Our novel sutureless device has the potential to advance surgical practice and improve patient outcomes.


Subject(s)
Anastomosis, Surgical , Animals , Swine , Sutureless Surgical Procedures/methods , Arteriovenous Anastomosis/surgery , Vascular Patency
4.
J Endovasc Ther ; : 15266028241231513, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38357736

ABSTRACT

CLINICAL IMPACT: The study establishes a rapid, technically straightforward, and reproducible porcine large animal model for acute iliocaval deep vein thrombosis (DVT). The procedure can be performed with basic endovascular skillsets. With its procedural efficiency and consistency, the platform is promising for comparative in vivo testing of venous thrombectomy devices in a living host, and for future verification and validation studies to determine efficacy of novel thrombectomy devices relative to predicates.

5.
Res Sq ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168215

ABSTRACT

Endovascular surgical procedures require the navigation of catheters and wires through the vasculature to reach distal target sites. Quantitative frameworks for device selection hold the potential to improve the tracking of endovascular devices through vascular anatomy by personalizing the device flexural rigidity to an individual's anatomy. However, data are lacking to facilitate this technology, in part because typical endovascular devices have intricate spatial variations in mechanical properties that are challenging and tedious to quantify repeatably. We therefore developed a three-point bend test methodology using a custom rig and applied it to measure lengthwise flexural rigidity profiles of endovascular devices that are used to target the cerebral vasculature. The methodology demonstrated high repeatability and was able to characterize transition zones. We applied the methodology to generate the first comprehensive, quantitative library of device flexural rigidities, spanning guidewires, intermediate guides, and long sheaths. We observed that these three classes of device have properties that fall into distinct ranges. Additional plots examining relationships between flexural rigidity, device diameter, and length revealed application-specific trends in flexural properties. This methodology and the data allow for standardized characterization and comparisons to aid device selection, and have the potential to both enhance surgical planning and inform future innovation.

SELECTION OF CITATIONS
SEARCH DETAIL