Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Nat Mater ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429520

ABSTRACT

Oxygen redox cathodes, such as Li1.2Ni0.13Co0.13Mn0.54O2, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O2- ions forms O2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O2- on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O2-/O2 redox process and O2 loss. The closed voids that trap O2 grow on cycling, rendering more of the trapped O2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O2. Our findings implicate the thermodynamic driving force to form O2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.

2.
Perfusion ; 39(3): 543-554, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36625378

ABSTRACT

BACKGROUND: Anti-human leukocyte antigen (HLA)-antibody production represents a major barrier to heart transplantation, limiting recipient compatibility with potential donors and increasing the risk of complications with poor waiting-list outcomes. Currently there is no consensus to when desensitization should take place, and through what mechanism, meaning that sensitized patients must wait for a compatible donor for many months, if not years. We aimed to determine if intraoperative immunoadsorption could provide a potential desensitization methodology. METHODS: Anti-HLA antibody-containing whole blood was added to a Cardiopulmonary bypass (CPB) circuit set up to mimic a 20 kg patient undergoing heart transplantation. Plasma was separated and diverted to a standalone, secondary immunoadsorption system, with antibody-depleted plasma returned to the CPB circuit. Samples for anti-HLA antibody definition were taken at baseline, when combined with the CPB prime (on bypass), and then every 20 min for the duration of treatment (total 180 min). RESULTS: A reduction in individual allele median fluorescence intensity (MFI) to below clinically relevant levels (<1000 MFI), and in the majority of cases below the lower positive detection limit (<500 MFI), even in alleles with a baseline MFI >4000 was demonstrated. Reduction occurred in all cases within 120 min, demonstrating efficacy in a time period usual for heart transplantation. Flowcytometric crossmatching of suitable pseudo-donor lymphocytes demonstrated a change from T cell and B cell positive channel shifts to negative, demonstrating a reduction in binding capacity. CONCLUSIONS: Intraoperative immunoadsorption in an ex vivo setting demonstrates clinically relevant reductions in anti-HLA antibodies within the normal timeframe for heart transplantation. This method represents a potential desensitization technique that could enable sensitized children to accept a donor organ earlier, even in the presence of donor-specific anti-HLA antibodies.


Subject(s)
Heart Transplantation , Kidney Transplantation , Child , Humans , Cardiopulmonary Bypass , Tissue Donors , HLA Antigens
3.
Adv Mater ; 36(11): e2311153, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095834

ABSTRACT

The narrow electrochemical stability window, deleterious side reactions, and zinc dendrites prevent the use of aqueous zinc-ion batteries. Here, aqueous "soggy-sand" electrolytes (synergistic electrolyte-insulator dispersions) are developed for achieving high-voltage Zn-ion batteries. How these electrolytes bring a unique combination of benefits, synergizing the advantages of solid and liquid electrolytes is revealed. The oxide additions adsorb water molecules and trap anions, causing a network of space charge layers with increased Zn2+ transference number and reduced interfacial resistance. They beneficially modify the hydrogen bond network and solvation structures, thereby influencing the mechanical and electrochemical properties, and causing the Mn2+ in the solution to be oxidized. As a result, the best performing Al2 O3 -based "soggy-sand" electrolyte exhibits a long life of 2500 h in Zn||Zn cells. Furthermore, it increases the charging cut-off voltage for Zn/MnO2 cells to 2 V, achieving higher specific capacities. Even with amass loading of 10 mgMnO2 cm-2 , it yields a promising specific capacity of 189 mAh g-1 at 1 A g-1 after 500 cycles. The concept of "soggy-sand" chemistry provides a new approach to design powerful and universal electrolytes for aqueous batteries.

4.
Adv Mater ; 36(9): e2307708, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37879760

ABSTRACT

Aqueous zinc electrolytes offer the potential for cheaper rechargeable batteries due to their safe compatibility with the high capacity metal anode; yet, they are stymied by irregular zinc deposition and consequent dendrite growth. Suppressing dendrite formation by tailoring the electrolyte is a proven approach from lithium batteries; yet, the underlying mechanistic understanding that guides such tailoring does not necessarily directly translate from one system to the other. Here, it is shown that the electrostatic shielding mechanism, a fundamental concept in electrolyte engineering for stable metal anodes, has different consequences for the plating morphology in aqueous zinc batteries. Operando electrochemical transmission electron microscopy is used to directly observe the zinc nucleation and growth under different electrolyte compositions and reveal that electrostatic shielding additive suppresses dendrites by inhibiting secondary zinc nucleation along the (100) edges of existing primary deposits and encouraging preferential deposition on the (002) faces, leading to a dense and block-like zinc morphology. The strong influence of the crystallography of Zn on the electrostatic shielding mechanism is further confirmed with Zn||Ti cells and density functional theory modeling. This work demonstrates the importance of considering the unique aspects of the aqueous zinc battery system when using concepts from other battery chemistries.

5.
J Thorac Cardiovasc Surg ; 165(4): 1505-1516, 2023 04.
Article in English | MEDLINE | ID: mdl-35840430

ABSTRACT

OBJECTIVE: Acute kidney injury (AKI) after pediatric cardiac surgery with cardiopulmonary bypass (CPB) is a frequently reported complication. In this study we aimed to determine the oxygen delivery indexed to body surface area (Do2i) threshold associated with postoperative AKI in pediatric patients during CPB, and whether it remains clinically important in the context of other known independent risk factors. METHODS: A single-institution, retrospective study, encompassing 396 pediatric patients, who underwent heart surgery between April 2019 and April 2021 was undertaken. Time spent below Do2i thresholds were compared to determine the critical value for all stages of AKI occurring within 48 hours of surgery. Do2i threshold was then included in a classification analysis with known risk factors including nephrotoxic drug usage, surgical complexity, intraoperative data, comorbidities and ventricular function data, and vasoactive inotrope requirement to determine Do2i predictive importance. RESULTS: Logistic regression models showed cumulative time spent below a Do2i value of 350 mL/min/m2 was associated with AKI. Random forest models, incorporating established risk factors, showed Do2i threshold still maintained predictive importance. Patients who developed post-CPB AKI were younger, had longer CPB and ischemic times, and required higher inotrope support postsurgery. CONCLUSIONS: The present data support previous findings that Do2i during CPB is an independent risk factor for AKI development in pediatric patients. Furthermore, the data support previous suggestions of a higher threshold value in children compared with that in adults and indicate that adjustments in Do2i management might reduce incidence of postoperative AKI in the pediatric cardiac surgery population.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Machine Learning , Oxygen , Child , Humans , Acute Kidney Injury/etiology , Cardiac Surgical Procedures/adverse effects , Cardiopulmonary Bypass/adverse effects , Postoperative Complications/etiology , Retrospective Studies , Risk Factors
6.
Chem Asian J ; 17(24): e202200997, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36282121

ABSTRACT

Electrochemical CO2 reduction (ECR) is recognized as a sustainable and promising approach for the production of high-value chemicals. To facilitate widespread application of this technology, the design and construction of efficient cathodic electrocatalysts is critically important. Here we report the synthesis of atomically dispersed manganese on nitrogen-doped porous carbon (Mn SAs/NC) using a facile and scalable annealing method for catalyzing the ECR reaction. The as-obtained Mn SAs/NC delivers high activity and selectivity toward CO formation with a faradaic efficiency of 80.5±0.6%, over 5 times that of bare NC. The high activity is preserved even after 10 h of continuous polarization. The catalytic properties of our cost-effective Mn SAs/NC catalyst are readily tuned by regulating the nitrogen configurations and the percentage of Mn SAs via modulation of the nitrogen precursor and the thermal treatment conditions.

7.
Adv Sci (Weinh) ; 9(33): e2204205, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36253143

ABSTRACT

Many challenges in the electrochemical synthesis of ammonia have been recognized with most effort focused on delineating false positives resulting from unidentified sources of nitrogen. However, the influence of oxidizing anolytes on the crossover and oxidization of ammonium during the electrolysis reaction remains unexplored. Here it is reported that the use of analytes containing halide ions (Cl- and Br- ) can rapidly convert the ammonium into N2 , which further intensifies the crossover of ammonium. Moreover, the extent of migration and oxidation of ammonium is found to be closely associated with external factors, such as applied potentials and the concentration of Cl- . These findings demonstrate the profound impact of oxidizing anolytes on the electrochemical synthesis of ammonia. Based on these results, many prior reported ammonia yield rates are calibrated. This work emphasizes the significance of avoiding selection of anolytes that can oxidize ammonium, which is believed to promote further progress in electrochemical nitrogen fixation.

8.
Chem Commun (Camb) ; 58(53): 7412-7415, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35695213

ABSTRACT

We report significantly enhanced electrochemical CO2 reduction (ECR) to C2H4 by tuning the interface of a metal oxide composite (CuOx/HfO2), enabling a C2H4 faradaic efficiency as high as 62.6 ± 1.3% at 300 mA cm-2, in contrast to only 11.6 ± 1.6% over pure CuO. Collective knowledge from multiple control experiments, density functional theory calculations, and operando Raman study reveals that the CuOx-HfO2 interface greatly strengthens CO2 adsorption and the binding of *CO for further C-C coupling to yield C2H4.

9.
Adv Mater ; 34(28): e2202552, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35560650

ABSTRACT

Despite being one of the most promising candidates for grid-level energy storage, practical aqueous zinc batteries are limited by dendrite formation, which leads to significantly compromised safety and cycling performance. In this study, by using single-crystal Zn-metal anodes, reversible electrodeposition of planar Zn with a high capacity of 8 mAh cm-2 can be achieved at an unprecedentedly high current density of 200 mA cm-2 . This dendrite-free electrode is well maintained even after prolonged cycling (>1200 cycles at 50 mA cm- 2 ). Such excellent electrochemical performance is due to single-crystal Zn suppressing the major sources of defect generation during electroplating and heavily favoring planar deposition morphologies. As so few defect sites form, including those that would normally be found along grain boundaries or to accommodate lattice mismatch, there is little opportunity for dendritic structures to nucleate, even under extreme plating rates. This scarcity of defects is in part due to perfect atomic-stitching between merging Zn islands, ensuring no defective shallow-angle grain boundaries are formed and thus removing a significant source of non-planar Zn nucleation. It is demonstrated that an ideal high-rate Zn anode should offer perfect lattice matching as this facilitates planar epitaxial Zn growth and minimizes the formation of any defective regions.

10.
Innovation (Camb) ; 3(1): 100190, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34984409

ABSTRACT

Demand for ammonia continues to increase to sustain the growing global population. The direct electrochemical N2 reduction reaction (NRR) powered by renewable electricity offers a promising carbon-neutral and sustainable strategy for manufacturing NH3, yet achieving this remains a grand challenge. Here, we report a synergistic strategy to promote ambient NRR for ammonia production by tuning the Te vacancies (VTe) and surface hydrophobicity of two-dimensional TaTe2 nanosheets. Remarkable NH3 faradic efficiency of up to 32.2% is attained at a mild overpotential, which is largely maintained even after 100 h of consecutive electrolysis. Isotopic labeling validates that the N atoms of formed NH4 + originate from N2. In situ X-ray diffraction indicates preservation of the crystalline structure of TaTe2 during NRR. Further density functional theory calculations reveal that the potential-determining step (PDS) is ∗NH2 + (H+ + e-) → NH3 on VTe-TaTe2 compared with that of ∗ + N2 + (H+ + e-) → ∗N-NH on TaTe2. We identify that the edge plane of TaTe2 and VTe serve as the main active sites for NRR. The free energy change at PDS on VTe-TaTe2 is comparable with the values at the top of the NRR volcano plots on various transition metal surfaces.

11.
Perfusion ; 37(5): 537-540, 2022 07.
Article in English | MEDLINE | ID: mdl-33761787

ABSTRACT

We present a dissection of the patent ductus arteriosus and pulmonary artery for surgical repair utilising cardiopulmonary bypass in the setting of vein of Galen malformation. Several strategies were employed to attenuate the cerebral shunt including pH-stat, high cardiac index, restrictive venous drainage, continuous ventilation and deep hypothermic circulatory arrest. The patient recovered from surgery with no apparent neurological sequelae.


Subject(s)
Hypothermia, Induced , Vein of Galen Malformations , Cardiopulmonary Bypass , Humans , Lung , Pulmonary Artery , Vein of Galen Malformations/complications , Vein of Galen Malformations/surgery
12.
J Heart Lung Transplant ; 40(11): 1433-1442, 2021 11.
Article in English | MEDLINE | ID: mdl-34187714

ABSTRACT

BACKGROUND: Intraoperative anti-A/B immunoadsorption (ABO-IA) was recently introduced for ABO-incompatible heart transplantation. Here we report the first case series of patients transplanted with ABO-IA, and compare outcomes with those undergoing plasma exchange facilitated ABO-incompatible heart transplantation (ABO-PE). METHODS: Data were retrospectively analysed on all ABO-incompatible heart transplants undertaken at a single centre between January 1, 2000 and June 1, 2020. Data included all routine laboratory tests, demographics and pre-operative characteristics, intraoperative details and post-operative outcomes. Primary outcome measures were volume of blood product transfusions, maximum post-transplant isohaemagglutinin titres, occurrence of rejection and graft survival. Secondary outcome measures were length of intensive care and hospital stay. Demographic and survival data were also obtained for ABO-compatible transplants during the same time period for comparison. RESULTS: Thirty-seven patients underwent ABO-incompatible heart transplantation, with 27 (73%) using ABO-PE and 10 (27%) using ABO-IA. ABO-IA patients were significantly older than ABO-PE patients (p < 0.001) and the total volume of blood products transfused during the hospital admission was significantly lower (164 [126-212] ml/kg vs 323 [268-379] ml/kg, p < 0.001). No significant differences were noted between methods in either pre or post-transplant maximum isohaemagglutinin titres, incidence of rejection, length of intensive care or total hospital stay. Survival comparison showed no significant difference between antibody reduction methods, or indeed ABO-compatible transplants (p = 0.6). CONCLUSIONS: This novel technique appears to allow a significantly older population than typical to undergo ABO-incompatible heart transplantation, as well as significantly reducing blood product utilization. Furthermore, intraoperative anti-A/B immunoadsorption does not demonstrate increased early post-transplant isohaemagglutinin accumulation or rates of rejection compared to ABO-PE. Early survival is equivalent between ABO-IA, ABO-PE and ABO-compatible heart transplantation.


Subject(s)
ABO Blood-Group System/immunology , Antibodies/immunology , Blood Group Incompatibility/immunology , Graft Rejection/prevention & control , Heart Transplantation/methods , Intraoperative Care/methods , Plasmapheresis/methods , Blood Group Incompatibility/complications , Blood Group Incompatibility/therapy , Child , Child, Preschool , Female , Follow-Up Studies , Graft Rejection/immunology , Graft Survival , Humans , Infant , Male , Retrospective Studies
13.
Sci Rep ; 11(1): 8412, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863958

ABSTRACT

A reasonable prediction of infectious diseases' transmission process under different disease control strategies is an important reference point for policy makers. Here we established a dynamic transmission model via Python and realized comprehensive regulation of disease control measures. We classified government interventions into three categories and introduced three parameters as descriptions for the key points in disease control, these being intraregional growth rate, interregional communication rate, and detection rate of infectors. Our simulation predicts the infection by COVID-19 in the UK would be out of control in 73 days without any interventions; at the same time, herd immunity acquisition will begin from the epicentre. After we introduced government interventions, a single intervention is effective in disease control but at huge expense, while combined interventions would be more efficient, among which, enhancing detection number is crucial in the control strategy for COVID-19. In addition, we calculated requirements for the most effective vaccination strategy based on infection numbers in a real situation. Our model was programmed with iterative algorithms, and visualized via cellular automata; it can be applied to similar epidemics in other regions if the basic parameters are inputted, and is able to synthetically mimic the effect of multiple factors in infectious disease control.


Subject(s)
COVID-19/diagnosis , Models, Theoretical , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Prognosis , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology , Vaccination/psychology
14.
Nat Commun ; 12(1): 561, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33495443

ABSTRACT

Binary metal oxides are attractive anode materials for lithium-ion batteries. Despite sustained effort into nanomaterials synthesis and understanding the initial discharge mechanism, the fundamental chemistry underpinning the charge and subsequent cycles-thus the reversible capacity-remains poorly understood. Here, we use in operando X-ray pair distribution function analysis combining with our recently developed analytical approach employing Metropolis Monte Carlo simulations and non-negative matrix factorisation to study the charge reaction thermodynamics of a series of Fe- and Mn-oxides. As opposed to the commonly believed conversion chemistry forming rocksalt FeO and MnO, we reveal the two oxide series topotactically transform into non-native body-centred cubic FeO and zincblende MnO via displacement-like reactions whose kinetics are governed by the mobility differences between displaced species. These renewed mechanistic insights suggest avenues for the future design of metal oxide materials as well as new material synthesis routes using electrochemically-assisted methods.

15.
Perfusion ; 36(1): 34-37, 2021 01.
Article in English | MEDLINE | ID: mdl-32493108

ABSTRACT

Traditionally, ABO-incompatible heart transplantation was accomplished using a plasma exchange technique to remove recipient plasma containing donor-incompatible anti-A/B isohaemagglutinins. However, this technique exposed patients to large volumes of allogeneic blood and blood products (up to three times the patient's circulating volume). In 2018, we published the first reported case of an ABO-incompatible heart transplant using an intraoperative immunoadsorption technique which minimises the exposure to blood products by specifically targeting anti-A/B isohaemagglutinins. We have subsequently used this technique in all children undergoing ABO-incompatible heart transplantation and become convinced of its efficacy in this population while observing no adverse effects. This article outlines the practical details required to perform the technique in order to avoid hyperacute rejection.


Subject(s)
Blood Group Incompatibility , Heart Transplantation , ABO Blood-Group System , Child , Hospitals , Humans , Plasmapheresis
16.
Chem Commun (Camb) ; 56(74): 10910-10913, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32789399

ABSTRACT

We report single yttrium sites anchored on carbon-coated TiO2 for efficient and stable electrocatalytic N2 fixation, delivering an NH3 faradaic efficiency exceeding 11.0% and an NH3 yield rate as high as 6.3 µgNH3 h-1 mgcat.-1 at low overpotentials, thus surpassing many reported metal electrocatalysts.

17.
Sci Adv ; 6(24): eaba4942, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32577521

ABSTRACT

The structural transformations of graphene defects have been extensively researched through aberration-corrected transmission electron microscopy (AC-TEM) and theoretical calculations. For a long time, a core concept in understanding the structural evolution of graphene defects has been the Stone-Thrower-Wales (STW)-type bond rotation. In this study, we show that undercoordinated atoms induce bond formation and breaking, with much lower energy barriers than the STW-type bond rotation. We refer to them as mediator atoms due to their mediating role in the breaking and forming of bonds. Here, we report the direct observation of mediator atoms in graphene defect structures using AC-TEM and annular dark-field scanning TEM (ADF-STEM) and explain their catalytic role by tight-binding molecular dynamics (TBMD) simulations and image simulations based on density functional theory (DFT) calculations. The study of mediator atoms will pave a new way for understanding not only defect transformation but also the growth mechanisms in two-dimensional materials.

18.
Mol Cancer Ther ; 19(7): 1486-1496, 2020 07.
Article in English | MEDLINE | ID: mdl-32371589

ABSTRACT

Treatment response assessment for patients with advanced solid tumors is complex and existing methods require greater precision. Current guidelines rely on imaging, which has known limitations, including the time required to show a deterministic change in target lesions. Serial changes in whole-genome (WG) circulating tumor DNA (ctDNA) were used to assess response or resistance to treatment early in the treatment course. Ninety-six patients with advanced cancer were prospectively enrolled (91 analyzed and 5 excluded), and blood was collected before and after initiation of a new, systemic treatment. Plasma cell-free DNA libraries were prepared for either WG or WG bisulfite sequencing. Longitudinal changes in the fraction of ctDNA were quantified to retrospectively identify molecular progression (MP) or major molecular response (MMR). Study endpoints were concordance with first follow-up imaging (FFUI) and stratification of progression-free survival (PFS) and overall survival (OS). Patients with MP (n = 13) had significantly shorter PFS (median 62 days vs. 310 days) and OS (255 days vs. not reached). Sensitivity for MP to identify clinical progression was 54% and specificity was 100%. MP calls were from samples taken a median of 28 days into treatment and 39 days before FFUI. Patients with MMR (n = 27) had significantly longer PFS and OS compared with those with neither call (n = 51). These results demonstrated that ctDNA changes early after treatment initiation inform response to treatment and correlate with long-term clinical outcomes. Once validated, molecular response assessment can enable early treatment change minimizing side effects and costs associated with additional cycles of ineffective treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Genome, Human , Mutation , Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Circulating Tumor DNA/analysis , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasms/drug therapy , Neoplasms/genetics , Prognosis , Retrospective Studies , Survival Rate
19.
Nanoscale ; 12(17): 9628-9639, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32319453

ABSTRACT

The commercialization of metal-air batteries requires efficient, low-cost, and stable bifunctional electrocatalysts for reversible electrocatalysis of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The modification of natural coal by heteroatoms such as N and S, or metal oxide species, has been demonstrated to form very promising electrocatalysts for the ORR and OER. However, it remains elusive and underexplored as to how the impurity elements in coal may impact the electrocatalytic properties of coal-derived catalysts. Herein, we explore the influence of the presence of various trace metals that are notable impurities in coal, including Al, Si, Ca, K, Fe, Mg, Co, Mn, Ni, and Cu, on the electrochemical performance of the prepared catalysts. The constructed Zn-air batteries are further shown to be able to power green LED lights for more than 80 h. The charge-discharge polarization curves exhibited excellent and durable rechargeability over 500 (ca. 84 h) continuous cycles. The promotional effect of the trace elements is believed to accrue from a combination of electronic structure modification of the active sites, enhancement of the active site density, and formation of a conductive 3-dimensional hierarchical network of carbon nanotubes.

20.
J Pharmacol Exp Ther ; 373(3): 337-346, 2020 06.
Article in English | MEDLINE | ID: mdl-32213546

ABSTRACT

Bone loss in response to alcohol intake has previously been hypothesized to be mediated by excessive production of reactive oxygen species via NADPH oxidase (Nox) enzymes. Nox4 is one of several Nox enzymes expressed in bone. We investigated the role of Nox4 in the chondro-osteoblastic lineage of the long bones in mice during normal chow feeding and during chronic ethanol feeding for 90 days. We generated mice with a genotype (PrxCre +/- Nox4 fl/fl) allowing conditional knockout of Nox4 in the limb bud mesenchyme. Adult mice had 95% knockdown of Nox4 expression in the femoral shafts. For mice on regular chow, only whole-body Nox4 knockout mice had clearly increased cortical thickness and bone mineral density in the tibiae. When chronically fed a liquid diet with and without ethanol, conditional Nox4 knockout mice had slightly reduced dimensions of the cortical and trabecular regions of the tibiae (P < 0.1). The ethanol diet caused a significant reduction in cortical bone area and cortical thickness relative to a control diet without ethanol (P < 0.05). The ethanol diet further reduced gene expression of Frizzled related protein (Frzb), myosin heavy chain 3, and several genes encoding collagen and other major structural bone proteins (P < 0.05), whereas the Nox4 genotype had no effects on these genes. In conclusion, Nox4 expression from both mesenchymal and nonmesenchymal cell lineages appears to exert subtle effects on bone. However, chronic ethanol feeding reduces cortical bone mass and cortical gene expression of major structural bone proteins in a Nox4-independent manner. SIGNIFICANCE STATEMENT: Excessive alcohol intake contributes to osteopenia and osteoporosis, with oxidative stress caused by the activity of NADPH oxidases hypothesized to be a mediator. We tested the role of NADPH oxidase (Nox) 4 in osteoblast precursors in the long bones of mice with a conditional Nox4 knockout model. We found that Nox4 exerted effects independent of alcohol intake, and ethanol effects on bone were Nox4-independent.


Subject(s)
Bone and Bones/drug effects , Ethanol/administration & dosage , Gene Expression/drug effects , NADPH Oxidase 4/genetics , Animals , Bone Density/drug effects , Bone Density/genetics , Female , Genotype , Male , Mice , Mice, Knockout , NADPH Oxidases/genetics , Osteoblasts/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...