Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
2.
JAMA Netw Open ; 7(6): e2414122, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38857050

ABSTRACT

Importance: Neurological manifestations during acute SARS-CoV-2-related multisystem inflammatory syndrome in children (MIS-C) are common in hospitalized patients younger than 18 years and may increase risk of new neurocognitive or functional morbidity. Objective: To assess the association of severe neurological manifestations during a SARS-CoV-2-related hospital admission with new neurocognitive or functional morbidities at discharge. Design, Setting, and Participants: This prospective cohort study from 46 centers in 10 countries included patients younger than 18 years who were hospitalized for acute SARS-CoV-2 or MIS-C between January 2, 2020, and July 31, 2021. Exposure: Severe neurological manifestations, which included acute encephalopathy, seizures or status epilepticus, meningitis or encephalitis, sympathetic storming or dysautonomia, cardiac arrest, coma, delirium, and stroke. Main Outcomes and Measures: The primary outcome was new neurocognitive (based on the Pediatric Cerebral Performance Category scale) and/or functional (based on the Functional Status Scale) morbidity at hospital discharge. Multivariable logistic regression analyses were performed to examine the association of severe neurological manifestations with new morbidity in each SARS-CoV-2-related condition. Results: Overall, 3568 patients younger than 18 years (median age, 8 years [IQR, 1-14 years]; 54.3% male) were included in this study. Most (2980 [83.5%]) had acute SARS-CoV-2; the remainder (588 [16.5%]) had MIS-C. Among the patients with acute SARS-CoV-2, 536 (18.0%) had a severe neurological manifestation during hospitalization, as did 146 patients with MIS-C (24.8%). Among survivors with acute SARS-CoV-2, those with severe neurological manifestations were more likely to have new neurocognitive or functional morbidity at hospital discharge compared with those without severe neurological manifestations (27.7% [n = 142] vs 14.6% [n = 356]; P < .001). For survivors with MIS-C, 28.0% (n = 39) with severe neurological manifestations had new neurocognitive and/or functional morbidity at hospital discharge compared with 15.5% (n = 68) of those without severe neurological manifestations (P = .002). When adjusting for risk factors in those with severe neurological manifestations, both patients with acute SARS-CoV-2 (odds ratio, 1.85 [95% CI, 1.27-2.70]; P = .001) and those with MIS-C (odds ratio, 2.18 [95% CI, 1.22-3.89]; P = .009) had higher odds of having new neurocognitive and/or functional morbidity at hospital discharge. Conclusions and Relevance: The results of this study suggest that children and adolescents with acute SARS-CoV-2 or MIS-C and severe neurological manifestations may be at high risk for long-term impairment and may benefit from screening and early intervention to assist recovery.


Subject(s)
COVID-19 , Hospitalization , Nervous System Diseases , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Humans , COVID-19/complications , COVID-19/epidemiology , Child , Female , Male , Child, Preschool , Hospitalization/statistics & numerical data , Adolescent , Prospective Studies , Systemic Inflammatory Response Syndrome/epidemiology , Nervous System Diseases/etiology , Nervous System Diseases/epidemiology , Infant , Severity of Illness Index
3.
Front Pediatr ; 12: 1340385, 2024.
Article in English | MEDLINE | ID: mdl-38410766

ABSTRACT

Introduction: Hospitalized children diagnosed with SARS-CoV-2-related conditions are at risk for new or persistent symptoms and functional impairments. Our objective was to analyze post-hospital symptoms, healthcare utilization, and outcomes of children previously hospitalized and diagnosed with acute SARS-CoV-2 infection or Multisystem Inflammatory Syndrome in Children (MIS-C). Methods: Prospective, multicenter electronic survey of parents of children <18 years of age surviving hospitalization from 12 U.S. centers between January 2020 and July 2021. The primary outcome was a parent report of child recovery status at the time of the survey (recovered vs. not recovered). Secondary outcomes included new or persistent symptoms, readmissions, and health-related quality of life. Multivariable backward stepwise logistic regression was performed for the association of patient, disease, laboratory, and treatment variables with recovered status. Results: The children [n = 79; 30 (38.0%) female] with acute SARS-CoV-2 (75.7%) or MIS-C (24.3%) had a median age of 6.5 years (interquartile range 2.0-13.0) and 51 (64.6%) had a preexisting condition. Fifty children (63.3%) required critical care. One-third [23/79 (29.1%)] were not recovered at follow-up [43 (31, 54) months post-discharge]. Admission C-reactive protein levels were higher in children not recovered vs. recovered [5.7 (1.3, 25.1) vs. 1.3 (0.4, 6.3) mg/dl, p = 0.02]. At follow-up, 67% overall had new or persistent symptoms. The most common symptoms were fatigue (37%), weakness (25%), and headache (24%), all with frequencies higher in children not recovered. Forty percent had at least one return emergency visit and 24% had a hospital readmission. Recovered status was associated with better total HRQOL [87 (77, 95) vs. 77 (51, 83), p = 0.01]. In multivariable analysis, lower admission C-reactive protein [odds ratio 0.90 (95% confidence interval 0.82, 0.99)] and higher admission lymphocyte count [1.001 (1.0002, 1.002)] were associated with recovered status. Conclusions: Children considered recovered by their parents following hospitalization with SARS-CoV-2-related conditions had less symptom frequency and better HRQOL than those reported as not recovered. Increased inflammation and lower lymphocyte count on hospital admission may help to identify children needing longitudinal, multidisciplinary care. Clinical Trial Registration: ClinicalTrials.gov (NCT04379089).

4.
J Pediatr Intensive Care ; 12(3): 159-166, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37565017

ABSTRACT

Pediatric patients with moyamoya arteriopathy are at high risk for developing new onset transient or permanent neurologic deficits secondary to cerebral hypoperfusion, particularly in the perioperative period. It is therefore essential to carefully manage these patients in a multidisciplinary, coordinated effort to reduce the risk of new permanent neurologic deficits. However, little has been published on perioperative management of pediatric patients with moyamoya, particularly in the early postoperative period during intensive care unit admission. Our pediatric neurocritical care team sought to create a multidisciplinary periprocedural evidence- and consensus-based care pathway for high-risk pediatric patients with moyamoya arteriopathy undergoing anesthesia for any reason to decrease the incidence of periprocedural stroke or transient ischemic attack (TIA). We reviewed the literature to identify risk factors associated with perioperative stroke or TIA among patients with moyamoya and to gather data supporting specific perioperative management strategies. A multidisciplinary team from pediatric anesthesia, neurocritical care, nursing, child life, neurosurgery, interventional neuroradiology, neurology, and hematology created a care pathway for children with moyamoya undergoing anesthesia, classifying them as either high or standard risk, and applying an individualized perioperative management plan to high-risk patients. The incidence of neurologic sequelae before and after pathway implementation will be compared in future studies.

5.
J Neurotrauma ; 40(11-12): 1197-1215, 2023 06.
Article in English | MEDLINE | ID: mdl-36416234

ABSTRACT

Therapies are limited for pediatric traumatic brain injury (TBI), especially for the very young who can experience long-term consequences to learning, memory, and social behavior. Animal models of pediatric TBI have yielded mechanistic insights, but demonstration of clinically relevant long-term behavioral and/or cognitive deficits has been challenging. We characterized short- and long-term outcomes in a controlled cortical impact (CCI) model of pediatric TBI using a panel of tests between 2 weeks and ∼4 months after injury. Male rats with CCI at postnatal Day (PND) 10 were compared with three control groups: Naïve, Anesthesia, and Craniotomy. Motor testing (PND 25-33), novel object recognition (NOR; PND 40-50), and multiple tasks in water maze (WM; PND 65-100) were followed by social interaction tests (PND 120-140). Anesthesia rats performed the same as Naïve rats in all tasks. TBI rats, when compared with Naïve controls, had functional impairments across most tests studied. The most sensitive cognitive processes affected by TBI included those that required fast one-trial learning (NOR, WM), flexibility of acquired memory traces (reversals in WM), response strategies (WM), or recognition memory in the setting of reciprocal social interactions. Both TBI and Craniotomy groups demonstrated increased rates of decision making across several WM tasks, suggesting disinhibition of motor responses. When the TBI group was compared with the Craniotomy group, however, deficits were detected in a limited number of outcomes. The latter included learning speed (WM), cognitive flexibility (WM), and social recognition memory. Notably, effects of craniotomy, when compared with Naïve controls, spanned across multiple tasks, and in some tasks, could reach the effect sizes observed in TBI. These results highlight the importance of appropriate control groups in pediatric CCI models. In addition, the study demonstrates the high sensitivity of comprehensive cognitive testing to detect long-term effects of early-age craniotomy and TBI and provides a template for future testing of experimental therapies.


Subject(s)
Brain Injuries, Traumatic , Rats , Animals , Male , Rats, Sprague-Dawley , Control Groups , Maze Learning/physiology , Brain Injuries, Traumatic/complications , Cognition , Disease Models, Animal
7.
J Bone Miner Res ; 37(8): 1464-1472, 2022 08.
Article in English | MEDLINE | ID: mdl-35689459

ABSTRACT

Osteocalcin in its undercarboxylated form (ucOC) may influence diabetes risk; however, its relationship with all-cause and cause-specific mortality is unclear. Whether other bone turnover markers (BTMs) are associated with mortality risk differently from ucOC also remains uncertain. Our aim was to determine associations of serum ucOC with all-cause and cause-specific mortality and compare these with the corresponding associations of serum total osteocalcin (TOC), procollagen type I N-propeptide (PINP), and collagen type 1 C-terminal cross-linked telopeptide (CTX) in older men. We conducted a prospective cohort study of 3871 community-dwelling men, aged 77.0 ± 3.6 years at baseline, followed for a median of 12.3 years. Exposure variables were ucOC, TOC, PINP, and CTX concentrations assayed in serum. Outcomes were incidence of all deaths and deaths due to cardiovascular disease (CVD) or cancer, ascertained using death registry data. Cox regression analyses adjusted for cardiovascular risk factors and prevalent CVD and for prevalent cancer in analyses of cancer-related mortality. Higher concentrations of ucOC, PINP, and CTX were associated with all-cause mortality (hazard ratio [HR] per 1 standard deviation increase: ucOC 1.12, 95% confidence interval [CI] 1.06-1.18, p < 0.001; PINP HR = 1.06, 95% CI 1.01-1.11, p = 0.009; CTX HR = 1.13, 95% CI 1.08-1.19, p < 0.001), but TOC was not associated. Similar results were found after excluding men with an incident fracture during follow-up. Higher ucOC and CTX were associated with CVD mortality (ucOC HR per 1 SD increase 1.13, 95% CI 1.05-1.22, p = 0.001; CTX HR = 1.12, 95% CI 1.04-1.20, p = 0.003), but this result was not significant in competing risks analysis. Higher CTX was also associated with cancer mortality (HR = 1.12, 95% CI 1.01-1.23, p = 0.024). In conclusion, in older men, higher bone turnover, assessed by BTMs including ucOC, is a biomarker for all-cause mortality risk. Undercarboxylated osteocalcin was a more informative biomarker for this outcome than TOC. Higher CTX was associated with all-cause and cancer-related mortality. Further evaluation of causality and potential underlying mechanisms is warranted. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cardiovascular Diseases , Collagen Type I , Aged , Biomarkers , Bone Remodeling , Humans , Male , Osteocalcin , Prospective Studies
8.
Neurocrit Care ; 37(1): 326-350, 2022 08.
Article in English | MEDLINE | ID: mdl-35534661

ABSTRACT

This proceedings article presents actionable research targets on the basis of the presentations and discussions at the 2nd Curing Coma National Institutes of Health (NIH) symposium held from May 3 to May 5, 2021. Here, we summarize the background, research priorities, panel discussions, and deliverables discussed during the symposium across six major domains related to disorders of consciousness. The six domains include (1) Biology of Coma, (2) Coma Database, (3) Neuroprognostication, (4) Care of Comatose Patients, (5) Early Clinical Trials, and (6) Long-term Recovery. Following the 1st Curing Coma NIH virtual symposium held on September 9 to September 10, 2020, six workgroups, each consisting of field experts in respective domains, were formed and tasked with identifying gaps and developing key priorities and deliverables to advance the mission of the Curing Coma Campaign. The highly interactive and inspiring presentations and panel discussions during the 3-day virtual NIH symposium identified several action items for the Curing Coma Campaign mission, which we summarize in this article.


Subject(s)
Coma , Consciousness , Coma/therapy , Consciousness Disorders/diagnosis , Consciousness Disorders/therapy , Humans , National Institutes of Health (U.S.) , United States
9.
Pediatr Neurol ; 128: 33-44, 2022 03.
Article in English | MEDLINE | ID: mdl-35066369

ABSTRACT

BACKGROUND: Our objective was to characterize the frequency, early impact, and risk factors for neurological manifestations in hospitalized children with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or multisystem inflammatory syndrome in children (MIS-C). METHODS: Multicenter, cross-sectional study of neurological manifestations in children aged <18 years hospitalized with positive SARS-CoV-2 test or clinical diagnosis of a SARS-CoV-2-related condition between January 2020 and April 2021. Multivariable logistic regression to identify risk factors for neurological manifestations was performed. RESULTS: Of 1493 children, 1278 (86%) were diagnosed with acute SARS-CoV-2 and 215 (14%) with MIS-C. Overall, 44% of the cohort (40% acute SARS-CoV-2 and 66% MIS-C) had at least one neurological manifestation. The most common neurological findings in children with acute SARS-CoV-2 and MIS-C diagnosis were headache (16% and 47%) and acute encephalopathy (15% and 22%), both P < 0.05. Children with neurological manifestations were more likely to require intensive care unit (ICU) care (51% vs 22%), P < 0.001. In multivariable logistic regression, children with neurological manifestations were older (odds ratio [OR] 1.1 and 95% confidence interval [CI] 1.07 to 1.13) and more likely to have MIS-C versus acute SARS-CoV-2 (OR 2.16, 95% CI 1.45 to 3.24), pre-existing neurological and metabolic conditions (OR 3.48, 95% CI 2.37 to 5.15; and OR 1.65, 95% CI 1.04 to 2.66, respectively), and pharyngeal (OR 1.74, 95% CI 1.16 to 2.64) or abdominal pain (OR 1.43, 95% CI 1.03 to 2.00); all P < 0.05. CONCLUSIONS: In this multicenter study, 44% of children hospitalized with SARS-CoV-2-related conditions experienced neurological manifestations, which were associated with ICU admission and pre-existing neurological condition. Posthospital assessment for, and support of, functional impairment and neuroprotective strategies are vitally needed.


Subject(s)
COVID-19/complications , Nervous System Diseases/epidemiology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/epidemiology , Acute Disease , Adolescent , Brain Diseases/epidemiology , Brain Diseases/etiology , COVID-19/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Headache/epidemiology , Headache/etiology , Humans , Infant , Intensive Care Units, Pediatric/statistics & numerical data , Logistic Models , Male , Nervous System Diseases/etiology , Prevalence , Risk Factors , South America/epidemiology , United States/epidemiology
10.
Neurocrit Care ; 35(2): 283-290, 2021 10.
Article in English | MEDLINE | ID: mdl-34184177

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected mortality and morbidity across all ages, including children. It is now known that neurological manifestations of COVID-19, ranging from headaches to stroke, may involve the central and/or peripheral nervous system at any age. Neurologic involvement is also noted in the multisystem inflammatory syndrome in children, a pediatric condition that occurs weeks after infection with the causative virus of COVID-19, severe acute respiratory syndrome coronavirus 2. Knowledge about mechanisms of neurologic disease is scarce but rapidly growing. COVID-19 neurologic manifestations may have particularly adverse impacts on the developing brain. Emerging data suggest a cohort of patients with COVID-19 will have longitudinal illness affecting their cognitive, physical, and emotional health, but little is known about the long-term impact on affected children and their families. Pediatric collaboratives have begun to provide important initial information on neuroimaging manifestations and the incidence of ischemic stroke in children with COVID 19. The Global Consortium Study of Neurologic Dysfunction in COVID-19-Pediatrics, a multinational collaborative, is working to improve understanding of the epidemiology, mechanisms of neurological manifestations, and the long-term implications of COVID-19 in children and their families.


Subject(s)
COVID-19 , Nervous System Diseases , Pediatrics , COVID-19/complications , Child , Humans , Nervous System , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
11.
Neurology ; 96(4): e575-e586, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33020166

ABSTRACT

OBJECTIVE: To determine the prevalence and associated mortality of well-defined neurologic diagnoses among patients with coronavirus disease 2019 (COVID-19), we prospectively followed hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients and recorded new neurologic disorders and hospital outcomes. METHODS: We conducted a prospective, multicenter, observational study of consecutive hospitalized adults in the New York City metropolitan area with laboratory-confirmed SARS-CoV-2 infection. The prevalence of new neurologic disorders (as diagnosed by a neurologist) was recorded and in-hospital mortality and discharge disposition were compared between patients with COVID-19 with and without neurologic disorders. RESULTS: Of 4,491 patients with COVID-19 hospitalized during the study timeframe, 606 (13.5%) developed a new neurologic disorder in a median of 2 days from COVID-19 symptom onset. The most common diagnoses were toxic/metabolic encephalopathy (6.8%), seizure (1.6%), stroke (1.9%), and hypoxic/ischemic injury (1.4%). No patient had meningitis/encephalitis or myelopathy/myelitis referable to SARS-CoV-2 infection and 18/18 CSF specimens were reverse transcriptase PCR negative for SARS-CoV-2. Patients with neurologic disorders were more often older, male, white, hypertensive, diabetic, intubated, and had higher sequential organ failure assessment (SOFA) scores (all p < 0.05). After adjusting for age, sex, SOFA scores, intubation, history, medical complications, medications, and comfort care status, patients with COVID-19 with neurologic disorders had increased risk of in-hospital mortality (hazard ratio [HR] 1.38, 95% confidence interval [CI] 1.17-1.62, p < 0.001) and decreased likelihood of discharge home (HR 0.72, 95% CI 0.63-0.85, p < 0.001). CONCLUSIONS: Neurologic disorders were detected in 13.5% of patients with COVID-19 and were associated with increased risk of in-hospital mortality and decreased likelihood of discharge home. Many observed neurologic disorders may be sequelae of severe systemic illness.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Hospitalization/statistics & numerical data , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Adult , Age Factors , Aged , Brain Diseases/epidemiology , Brain Diseases/etiology , COVID-19/mortality , Female , Hospital Mortality , Humans , Intubation, Intratracheal/statistics & numerical data , Male , Middle Aged , Nervous System Diseases/mortality , Neurotoxicity Syndromes , New York City/epidemiology , Organ Dysfunction Scores , Patient Discharge/statistics & numerical data , Prospective Studies , Sex Factors , Spinal Cord Diseases/epidemiology , Spinal Cord Diseases/etiology , Young Adult
12.
J Head Trauma Rehabil ; 36(1): E1-E17, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33369993

ABSTRACT

In this report, we identify existing issues and challenges related to research on traumatic brain injury (TBI) in females and provide future directions for research. In 2017, the National Institutes of Health, in partnership with the Center for Neuroscience and Regenerative Medicine and the Defense and Veterans Brain Injury Center, hosted a workshop that focused on the unique challenges facing researchers, clinicians, patients, and other stakeholders regarding TBI in women. The goal of this "Understanding TBI in Women" workshop was to bring together researchers and clinicians to identify knowledge gaps, best practices, and target populations in research on females and/or sex differences within the field of TBI. The workshop, and the current literature, clearly highlighted that females have been underrepresented in TBI studies and clinical trials and have often been excluded (or ovariectomized) in preclinical studies. Such an absence in research on females has led to an incomplete, and perhaps inaccurate, understanding of TBI in females. The presentations and discussions centered on the existing knowledge regarding sex differences in TBI research and how these differences could be incorporated in preclinical and clinical efforts going forward. Now, a little over 2 years later, we summarize the issues and state of the science that emerged from the "Understanding TBI in Women" workshop while incorporating updates where they exist. Overall, despite some progress, there remains an abundance of research focused on males and relatively little explicitly on females.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Veterans , Brain , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/therapy , Female , Humans , Male , Motivation
13.
Neurocrit Care ; 33(3): 793-828, 2020 12.
Article in English | MEDLINE | ID: mdl-32948987

ABSTRACT

Since its original report in January 2020, the coronavirus disease 2019 (COVID-19) due to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection has rapidly become one of the deadliest global pandemics. Early reports indicate possible neurological manifestations associated with COVID-19, with symptoms ranging from mild to severe, highly variable prevalence rates, and uncertainty regarding causal or coincidental occurrence of symptoms. As neurological involvement of any systemic disease is frequently associated with adverse effects on morbidity and mortality, obtaining accurate and consistent global data on the extent to which COVID-19 may impact the nervous system is urgently needed. To address this need, investigators from the Neurocritical Care Society launched the Global Consortium Study of Neurological Dysfunction in COVID-19 (GCS-NeuroCOVID). The GCS-NeuroCOVID consortium rapidly implemented a Tier 1, pragmatic study to establish phenotypes and prevalence of neurological manifestations of COVID-19. A key component of this global collaboration is development and application of common data elements (CDEs) and definitions to facilitate rigorous and systematic data collection across resource settings. Integration of these elements is critical to reduce heterogeneity of data and allow for future high-quality meta-analyses. The GCS-NeuroCOVID consortium specifically designed these elements to be feasible for clinician investigators during a global pandemic when healthcare systems are likely overwhelmed and resources for research may be limited. Elements include pediatric components and translated versions to facilitate collaboration and data capture in Latin America, one of the epicenters of this global outbreak. In this manuscript, we share the specific data elements, definitions, and rationale for the adult and pediatric CDEs for Tier 1 of the GCS-NeuroCOVID consortium, as well as the translated versions adapted for use in Latin America. Global efforts are underway to further harmonize CDEs with other large consortia studying neurological and general aspects of COVID-19 infections. Ultimately, the GCS-NeuroCOVID consortium network provides a critical infrastructure to systematically capture data in current and future unanticipated disasters and disease outbreaks.


Subject(s)
COVID-19/physiopathology , Common Data Elements , Forms as Topic , Nervous System Diseases/physiopathology , COVID-19/complications , Data Collection , Documentation , Humans , Internationality , Nervous System Diseases/etiology , SARS-CoV-2
15.
Neurocrit Care ; 33(1): 25-34, 2020 08.
Article in English | MEDLINE | ID: mdl-32445105

ABSTRACT

BACKGROUND: As the COVID-19 pandemic developed, reports of neurological dysfunctions spanning the central and peripheral nervous systems have emerged. The spectrum of acute neurological dysfunctions may implicate direct viral invasion, para-infectious complications, neurological manifestations of systemic diseases, or co-incident neurological dysfunction in the context of high SARS-CoV-2 prevalence. A rapid and pragmatic approach to understanding the prevalence, phenotypes, pathophysiology and prognostic implications of COVID-19 neurological syndromes is urgently needed. METHODS: The Global Consortium to Study Neurological dysfunction in COVID-19 (GCS-NeuroCOVID), endorsed by the Neurocritical Care Society (NCS), was rapidly established to address this need in a tiered approach. Tier-1 consists of focused, pragmatic, low-cost, observational common data element (CDE) collection, which can be launched immediately at many sites in the first phase of this pandemic and is designed for expedited ethical board review with waiver-of-consent. Tier 2 consists of prospective functional and cognitive outcomes assessments with more detailed clinical, laboratory and radiographic data collection that would require informed consent. Tier 3 overlays Tiers 1 and 2 with experimental molecular, electrophysiology, pathology and imaging studies with longitudinal outcomes assessment and would require centers with specific resources. A multicenter pediatrics core has developed and launched a parallel study focusing on patients ages <18 years. Study sites are eligible for participation if they provide clinical care to COVID-19 patients and are able to conduct patient-oriented research under approval of an internal or global ethics committee. Hospitalized pediatric and adult patients with SARS-CoV-2 and with acute neurological signs or symptoms are eligible to participate. The primary study outcome is the overall prevalence of neurological complications among hospitalized COVID-19 patients, which will be calculated by pooled estimates of each neurological finding divided by the average census of COVID-19 positive patients over the study period. Secondary outcomes include: in-hospital, 30 and 90-day morality, discharge modified Rankin score, ventilator-free survival, ventilator days, discharge disposition, and hospital length of stay. RESULTS: In a one-month period (3/27/20-4/27/20) the GCS-NeuroCOVID consortium was able to recruit 71 adult study sites, representing 17 countries and 5 continents and 34 pediatrics study sites. CONCLUSIONS: This is one of the first large-scale global research collaboratives urgently assembled to evaluate acute neurological events in the context of a pandemic. The innovative and pragmatic tiered study approach has allowed for rapid recruitment and activation of numerous sites across the world-an approach essential to capture real-time critical neurological data to inform treatment strategies in this pandemic crisis.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Nervous System Diseases/diagnosis , Nervous System Diseases/virology , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Humans , Nervous System Diseases/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pragmatic Clinical Trials as Topic , Prevalence , Research Design , Risk Factors , SARS-CoV-2
16.
BMC Neurosci ; 21(1): 22, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32404052

ABSTRACT

BACKGROUND: Polynitroxylated PEGylated hemoglobin (PNPH, aka SanFlow) possesses superoxide dismutase/catalase mimetic activities that may directly protect the brain from oxidative stress. Stabilization of PNPH with bound carbon monoxide prevents methemoglobin formation during storage and permits it to serve as a carbon monoxide donor. We determined whether small volume transfusion of hyperoncotic PNPH is neuroprotective in a polytrauma model of traumatic brain injury (TBI) plus hemorrhagic shock. Guinea pigs were used because, like humans, they do not synthesize their own ascorbic acid, which is important in reducing methemoglobin. RESULTS: TBI was produced by controlled cortical impact and was followed by 20 mL/kg hemorrhage to a mean arterial pressure (MAP) of 40 mmHg. At 90 min, animals were resuscitated with 20 mL/kg lactated Ringer's solution or 10 mL/kg PNPH. Resuscitation with PNPH significantly augmented the early recovery of MAP after hemorrhagic shock by 10-18 mmHg; whole blood methemoglobin was only 1% higher and carboxyhemoglobin was 2% higher. At 9 days of recovery, unbiased stereology analysis revealed that, compared to animals resuscitated with lactated Ringer's solution, those treated with PNPH had significantly more viable neurons in the hippocampus CA1 + 2 region (59 ± 10% versus 87 ± 18% of sham and naïve mean value) and in the dentate gyrus (70 ± 21% versus 96 ± 24%; n = 12 per group). CONCLUSION: PNPH may serve as a small-volume resuscitation fluid for polytrauma involving TBI and hemorrhagic shock. The neuroprotection afforded by PNPH seen in other species was sustained in a species without endogenous ascorbic acid synthesis, thereby supporting potential translatability for human use.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Catalase/pharmacology , Hemorrhage/drug therapy , Resuscitation , Shock, Hemorrhagic/drug therapy , Animals , Guinea Pigs , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology
17.
Interact J Med Res ; 9(1): e13029, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32141836

ABSTRACT

BACKGROUND: Approximately 50% of patients are nonadherent to prescribed medications. Patient perception regarding medication effectiveness has been linked to improved adherence. However, how patients perceive effectiveness is poorly understood. OBJECTIVE: The aim of this study was to elucidate factors associated with perceived treatment satisfaction and effectiveness among patients with chronic health conditions. METHODS: We conducted a descriptive study using a cross-sectional survey design. We administered a Web-based survey to participants with migraine, multiple sclerosis (MS), or rheumatoid arthritis (RA). Patients were recruited from established online communities of Health Union. Descriptive statistics, correlations, and comparison tests were used to examine outcomes. RESULTS: Data were collected from 1820 patients: 567 with migraine, 717 with MS, and 536 with RA. The majority of participants were female (1644/1820, 90.33%), >40 years old (1462/1820, 80.33%), and diagnosed >5 years ago (1189/1820, 65.33%). Treatment satisfaction and perceived medication effectiveness were highly correlated (r=0.90, P<.01). Overall, three temporal factors were positively correlated with satisfaction or perceived effectiveness: time on current medication (satisfaction rs=0.22, P<.01; effectiveness rs=0.25, P<.01), time since diagnosis (satisfaction rs=0.07, P<.01; effectiveness rs=0.09, P<.01), and time on treatment (effectiveness rs=0.08, P<.01). CONCLUSIONS: Findings validated the strong relationship between treatment satisfaction and perceived effectiveness. Understanding the (1) positive relationship between time and treatment satisfaction and effectiveness and (2) factors associated with determining medication effectiveness can help clinicians better understand the mindset of patients regarding treatment. Clinicians may be better prepared to elicit patient beliefs, which influence medication adherence, for people diagnosed with chronic health conditions.

18.
J Neurotrauma ; 37(14): 1656-1667, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32079496

ABSTRACT

Young children who have sustained severe traumatic brain injury (TBI) can suffer from debilitating neurocognitive deficits. Impairment of adult hippocampal neurogenesis is associated with cognitive deficits and depression. Very few studies have investigated the adult hippocampal neurogenesis after pediatric TBI. Here, we evaluated long-term cognition, adult hippocampal neurogenesis, and microglial activation in a rabbit pediatric TBI model. On Post-natal Day 5-7 (P5-7), New Zealand white rabbits from the same litter were randomized into naïve, sham (craniotomy alone), and TBI (controlled cortical impact). Bromodeoxyuridine (BrdU, 50 mg/kg, intraperitoneally) was administered at 1-month post-injury, once/daily for 5 consecutive days. Novel object recognition and spontaneous alternation in T-maze tests were performed at 2 months post-injury to measure the cognitive functions. The animals were euthanized after behavioral tests at 3 months of age to evaluate adult hippocampal neurogenesis and microglial activation. We found that: 1) pediatric TBI caused significant deficits in hippocampal dependent cognitive functions; 2) the survival rates of adult-born neurons at both ipsilateral and contralateral hippocampus significantly decreased in the TBI group; 3) TBI induced ectopic migration of adult-born neurons at the dorsal dentate gyrus in both ipsilateral and contralateral hippocampus; 4) TBI increased astrogenesis in the hilus of the dentate gyrus; and 5) TBI results in abnormal microglial activation. In conclusion, pediatric TBI causes prolonged neuroinflammation and dysregulation of the adult hippocampal neurogenesis through young adulthood, which might be responsible for the cognitive deficits. Protection of adult hippocampal neurogenesis may potentially improve outcomes.


Subject(s)
Brain Injuries, Traumatic/pathology , Cognition Disorders/pathology , Hippocampus/pathology , Neurogenesis/physiology , Age Factors , Animals , Brain Injuries, Traumatic/psychology , Cognition Disorders/psychology , Female , Male , Maze Learning/physiology , Rabbits
19.
J Diabetes Sci Technol ; 14(2): 303-308, 2020 03.
Article in English | MEDLINE | ID: mdl-31441324

ABSTRACT

BACKGROUND: We aimed to explore the impact of externally worn diabetes technologies on sexual behavior and activity, body image, and anxiety in adopters and nonadopters of these devices. METHODS: People with type 1 diabetes aged 16-60 years living in Western Australia were invited to complete an online survey. RESULTS: Of the 289 respondents (mean age 34.3 years), 45% used continuous subcutaneous insulin infusion (CSII) and 35% used continuous glucose monitoring (CGM). Approximately half of CSII users stated that the pump interferes with sex. Of these, 75% disconnect their pump during sexual activity to avoid this issue. Comfort during sex influenced the location of the CSII insertion site in 22% of respondents, with the abdomen being preferred. One in four non-CSII users cited sex-related concerns as a factor for not adopting the technology. CGM interfered with sexual activity in 20% of users, but did not commonly affect CGM placement (only 18%). Sexual activity was reported as a factor for not adopting the technology in 10% of non-CGM users. No differences in body dissatisfaction (P = .514) or anxiety (P = .304) between CSII and non-CSII users were observed. No differences in sexual activity and behavior between technology users and nontechnology users were observed. CONCLUSION: Wearable technologies impact upon sexual activity and this influences the decision to adopt the technology. Despite this, technology users are similar in terms of sexual behavior, anxiety, and body image compared to nontechnology users. Where appropriate, these data can be used to identify potential concerns, address strategies to mitigate them, and inform people with diabetes when considering adopting external technologies.


Subject(s)
Body Image , Diabetes Mellitus, Type 1 , Glycemic Control , Sexual Behavior , Wearable Electronic Devices/psychology , Adolescent , Adult , Anxiety/epidemiology , Anxiety/etiology , Blood Glucose/analysis , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/psychology , Body Image/psychology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/psychology , Female , Glycemic Control/instrumentation , Glycemic Control/psychology , Humans , Insulin Infusion Systems/psychology , Male , Middle Aged , Sexual Behavior/physiology , Sexual Behavior/psychology , Surveys and Questionnaires , Western Australia/epidemiology , Young Adult
20.
Curr Pharm Teach Learn ; 11(9): 909-914, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31570128

ABSTRACT

INTRODUCTION: The objectives of this study were to implement a faculty development book club centering on pharmacy education and to evaluate faculty opinions of the process. METHODS: A year-long pharmacy faculty development book club was conducted. Monthly meetings explored a pharmacy education text. Discussions centered on reflective questions submitted by chapter facilitators. Participants completed pre- and post-surveys regarding attitudes and opinions of faculty development utilizing a book club format. The Kruskal-Wallis, Dunn's multiple comparisons, Mann-Whitney, and Wilcoxon tests were used to analyze results. RESULTS: Of 48 faculty, 26 and 19 responded to the pre- and post-surveys, respectively; 73% agreed they would like a faculty development book club on the pre-survey, while 86.3% of participants were satisfied or highly satisfied with the book club on the post-survey. On the pre-survey, females and clinical faculty felt they would be more engaged in the book club than in more traditional development programs; the same groups indicated more engagement on the post-survey. Males indicated greater improvement in teaching abilities than females as a result of the book club. Of paired pre- and post-surveys, 12 respondents more strongly agreed that they were able to describe characteristics of a student-centered approach to teaching after the book club. CONCLUSIONS: Faculty found a comprehensive book club to be an enjoyable and engaging way of developing skills and knowledge as a pharmacy academician. This alternative delivery method for faculty development programming can be replicated by other institutions. Further study is needed to evaluate long-term outcomes.


Subject(s)
Faculty, Pharmacy/education , Reading , Staff Development/methods , Adult , Book Selection , Education, Pharmacy/methods , Female , Humans , Male , Middle Aged , Staff Development/standards , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL