Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Elife ; 132024 May 09.
Article in English | MEDLINE | ID: mdl-38722677

ABSTRACT

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Subject(s)
Cell Differentiation , Down-Regulation , MicroRNAs , Nuclear Receptor Subfamily 1, Group F, Member 3 , Pulmonary Emphysema , Th17 Cells , Animals , Female , Humans , Male , Mice , Interleukin-17/metabolism , Interleukin-17/genetics , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Th17 Cells/immunology , Th17 Cells/metabolism
2.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-37905101

ABSTRACT

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 family of miRNAs is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the let-7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here we show that overall expression of the let-7 miRNA clusters, let-7b/let-7c2 and let-7a1/let-7f1/let-7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the let-7b/let-7c2-cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the let-7b/let-7c2-cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing let-7 in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of let-7 miRNA in T cells. Overall, our findings shed light on the let-7/RORγt axis with let-7 acting as a molecular brake in the generation of Tc17 cells and suggests a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

3.
Redox Biol ; 64: 102790, 2023 08.
Article in English | MEDLINE | ID: mdl-37348155

ABSTRACT

Oxygen supplementation is life saving for premature infants and for COVID-19 patients but can induce long-term pulmonary injury by triggering inflammation, with xenobiotic-metabolizing CYP enzymes playing a critical role. Murine studies showed that CYP1B1 enhances, while CYP1A1 and CYP1A2 protect from, hyperoxic lung injury. In this study we tested the hypothesis that Cyp1b1-null mice would revert hyperoxia-induced transcriptomic changes observed in WT mice at the transcript and pathway level. Wild type (WT) C57BL/6J and Cyp1b1-null mice aged 8-10 weeks were maintained in room air (21% O2) or exposed to hyperoxia (>95% O2) for 48h. Transcriptomic profiling was conducted using the Illumina microarray platform. Hyperoxia exposure led to robust changes in gene expression and in the same direction in WT, Cyp1a1-, Cyp1a2-, and Cyp1b1-null mice, but to different extents for each mouse genotype. At the transcriptome level, all Cyp1-null murine models reversed hyperoxia effects. Gene Set Enrichment Analysis identified 118 hyperoxia-affected pathways mitigated only in Cyp1b1-null mice, including lipid, glutamate, and amino acid metabolism. Cell cycle genes Cdkn1a and Ccnd1 were induced by hyperoxia in both WT and Cyp1b1-null mice but mitigated in Cyp1b1-null O2 compared to WT O2 mice. Hyperoxia gene signatures associated positively with bronchopulmonary dysplasia (BPD), which occurs in premature infants (with supplemental oxygen being one of the risk factors), but only in the Cyp1b1-null mice did the gene profile after hyperoxia exposure show a partial rescue of BPD-associated transcriptome. Our study suggests that CYP1B1 plays a pro-oxidant role in hyperoxia-induced lung injury.


Subject(s)
Bronchopulmonary Dysplasia , COVID-19 , Hyperoxia , Lung Injury , Humans , Infant, Newborn , Animals , Mice , Hyperoxia/metabolism , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Lung Injury/genetics , Lung Injury/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Mice, Inbred C57BL , COVID-19/metabolism , Oxygen/metabolism , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/complications , Mice, Knockout , Lung/metabolism , Animals, Newborn
4.
iScience ; 26(2): 105965, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824274

ABSTRACT

Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.

5.
Cancer Med ; 12(1): 584-596, 2023 01.
Article in English | MEDLINE | ID: mdl-35676822

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) comprises the majority (~85%) of all lung tumors, with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being the most frequently diagnosed histological subtypes. Multi-modal omics profiling has been carried out in NSCLC, but no studies have yet reported a unique metabolite-related gene signature and altered metabolic pathways associated with LUAD and LUSC. METHODS: We integrated transcriptomics and metabolomics to analyze 30 human lung tumors and adjacent noncancerous tissues. Differential co-expression was used to identify modules of metabolites that were altered between normal and tumor. RESULTS: We identified unique metabolite-related gene signatures specific for LUAD and LUSC and key pathways aberrantly regulated at both transcriptional and metabolic levels. Differential co-expression analysis revealed that loss of coherence between metabolites in tumors is a major characteristic in both LUAD and LUSC. We identified one metabolic onco-module gained in LUAD, characterized by nine metabolites and 57 metabolic genes. Multi-omics integrative analysis revealed a 28 metabolic gene signature associated with poor survival in LUAD, with six metabolite-related genes as individual prognostic markers. CONCLUSIONS: We demonstrated the clinical utility of this integrated metabolic gene signature in LUAD by using it to guide repurposing of AZD-6482, a PI3Kß inhibitor which significantly inhibited three genes from the 28-gene signature. Overall, we have integrated metabolomics and transcriptomics analyses to show that LUAD and LUSC have distinct profiles, inferred gene signatures with prognostic value for patient survival, and identified therapeutic targets and repurposed drugs for potential use in NSCLC treatment.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Transcriptome , Adenocarcinoma of Lung/genetics , Gene Expression Profiling
6.
J Cardiovasc Aging ; 2(3)2022 Jul.
Article in English | MEDLINE | ID: mdl-35891706

ABSTRACT

Introduction: Mutations in the LMNA gene, encoding Lamin A/C (LMNA), are established causes of dilated cardiomyopathy (DCM). The phenotype is typically characterized by progressive cardiac conduction defects, arrhythmias, heart failure, and premature death. DCM is primarily considered a disease of cardiac myocytes. However, LMNA is also expressed in other cardiac cell types, including fibroblasts. Aim: The purpose of the study was to determine the contribution of the fibroblasts to DCM caused by LMNA deficiency. Methods and Results: The Lmna gene was deleted by crossing the platelet-derived growth factor receptor α-Cre recombinase (Pdgfra-Cre) and floxed Lmna (Lmna F/F) mice. The LMNA protein was nearly absent in ~80% of the cardiac fibroblasts and ~25% of cardiac myocytes in the Pdgfra-Cre:Lmna F/F mice. The Pdgfra-Cre:Lmna F/F mice showed an early phenotype characterized by cardiac conduction defects, arrhythmias, cardiac dysfunction, myocardial fibrosis, apoptosis, and premature death within the first six weeks of life. The Pdgfra-Cre:Lmna wild type/F (Lmna W/F) mice also showed a similar but slowly evolving phenotype that was expressed within one year of age. RNA sequencing of LMNA-deficient and wild-type cardiac fibroblasts identified differential expression of ~410 genes, which predicted activation of the TP53 and TNFA/NFκB and suppression of the cell cycle pathways. In agreement with these findings, levels of phospho-H2AFX, ATM, phospho-TP53, and CDKN1A, markers of the DNA damage response (DDR) pathway, were increased in the Pdgfra-Cre:Lmna F/F mouse hearts. Moreover, expression of senescence-associated beta-galactosidase was induced and levels of the senescence-associated secretory phenotype (SASP) proteins TGFß1, CTGF (CCN2), and LGLAS3 were increased as well as the transcript levels of additional genes encoding SASP proteins in the Pdgfra-Cre:Lmna F/F mouse hearts. Finally, expression of pH2AFX, a bonafide marker of the double-stranded DNA breaks, was increased in cardiac fibroblasts isolated from the Pdgfra-Cre:Lmna F/F mouse hearts. Conclusion: Deletion of the Lmna gene in fibroblasts partially recapitulates the phenotype of the LMNA-associated DCM, likely through induction of double-stranded DNA breaks, activation of the DDR pathway, and induction of expression of the SASP proteins. The findings indicate that the phenotype in the LMNA-associated DCM is the aggregate consequence of the LMNA deficiency in multiple cardiac cells, including cardiac fibroblasts.

7.
Pediatr Res ; 92(6): 1580-1589, 2022 12.
Article in English | MEDLINE | ID: mdl-35338351

ABSTRACT

BACKGROUND: Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide (LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence. METHODS: C57BL6/J mice were exposed to 21% (normoxia) or 70% (hyperoxia) oxygen during postnatal days (PND) 1-14. Pups were injected with LPS (6 mg/kg) or equal PBS volume, intraperitoneally on PND 3, 5, and 7. At PND14, the lungs were collected for microbiome and metabolomic analyses (n = 5/group). RESULTS: Microbiome alpha and beta diversity were similar between groups. Metabolic changes included hyperoxia 31 up/18 down, LPS 7 up/4 down, exposure interaction 8. Hyperoxia increased Intestinimonas abundance, whereas LPS decreased Clostridiales, Dorea, and Intestinimonas; exposure interaction affected Blautia. Differential co-expression analysis on multi-omics data identified exposure-altered modules. Hyperoxia metabolomics response was integrated with a published matching transcriptome, identifying four induced genes (ALDOA, GAA, NEU1, RENBP), which positively correlated with BPD severity in a published human newborn cohort. CONCLUSIONS: We report hyperoxia and LPS lung microbiome and metabolome signatures in a clinically relevant BPD model. We identified four genes correlating with BPD status in preterm infants that are promising targets for therapy and prevention. IMPACT: Using multi-omics, we identified and correlated key biomarkers of hyperoxia and LPS on murine lung micro-landscape and examined their potential clinical implication, which shows strong clinical relevance for future research. Using a double-hit model of clinical relevance to bronchopulmonary dysplasia, we are the first to report integrated metabolomic/microbiome landscape changes and identify novel disease biomarker candidates.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Microbiota , Pneumonia , Animals , Infant, Newborn , Humans , Mice , Bronchopulmonary Dysplasia/etiology , Hyperoxia/complications , Hyperoxia/metabolism , Animals, Newborn , Dysbiosis , Lipopolysaccharides/metabolism , Multiomics , Infant, Premature , Lung/metabolism , Pneumonia/metabolism , Inflammation/metabolism , Metabolome , Disease Models, Animal
8.
Sci Rep ; 12(1): 5351, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354884

ABSTRACT

The constitutively active androgen receptor (AR) splice variant, AR-V7, plays an important role in resistance to androgen deprivation therapy in castration resistant prostate cancer (CRPC). Studies seeking to determine whether AR-V7 is a partial mimic of the AR, or also has unique activities, and whether the AR-V7 cistrome contains unique binding sites have yielded conflicting results. One limitation in many studies has been the low level of AR variant compared to AR. Here, LNCaP and VCaP cell lines in which AR-V7 expression can be induced to match the level of AR, were used to compare the activities of AR and AR-V7. The two AR isoforms shared many targets, but overall had distinct transcriptomes. Optimal induction of novel targets sometimes required more receptor isoform than classical targets such as PSA. The isoforms displayed remarkably different cistromes with numerous differential binding sites. Some of the unique AR-V7 sites were located proximal to the transcription start sites (TSS). A de novo binding motif similar to a half ARE was identified in many AR-V7 preferential sites and, in contrast to conventional half ARE sites that bind AR-V7, FOXA1 was not enriched at these sites. This supports the concept that the AR isoforms have unique actions with the potential to serve as biomarkers or novel therapeutic targets.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgen Antagonists , Chromatin , Gene Expression Profiling , Humans , Male , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism
9.
Sci Rep ; 12(1): 2847, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181688

ABSTRACT

Rheumatoid arthritis (RA)-associated interstitial lung disease (RA-ILD) is the most common pulmonary complication of RA, increasing morbidity and mortality. Anti-citrullinated protein antibodies have been associated with the development and progression of both RA and fibrotic lung disease; however, the role of protein citrullination in RA-ILD remains unclear. Here, we demonstrate that the expression of peptidylarginine deiminase 2 (PAD2), an enzyme that catalyzes protein citrullination, is increased in lung homogenates from subjects with RA-ILD and their lung fibroblasts. Chemical inhibition or genetic knockdown of PAD2 in RA-ILD fibroblasts attenuated their activation, marked by decreased myofibroblast differentiation, gel contraction, and extracellular matrix gene expression. Treatment of RA-ILD fibroblasts with the proteoglycan syndecan-2 (SDC2) yielded similar antifibrotic effects through regulation of PAD2 expression, phosphoinositide 3-kinase/Akt signaling, and Sp1 activation in a CD148-dependent manner. Furthermore, SDC2-transgenic mice exposed to bleomycin-induced lung injury in an inflammatory arthritis model expressed lower levels of PAD2 and were protected from the development of pulmonary fibrosis. Together, our results support a SDC2-sensitive profibrotic role for PAD2 in RA-ILD fibroblasts and identify PAD2 as a promising therapeutic target of RA-ILD.


Subject(s)
Arthritis, Rheumatoid/genetics , Lung Injury/genetics , Protein-Arginine Deiminase Type 2/genetics , Pulmonary Fibrosis/genetics , Syndecan-2/genetics , Animals , Anti-Citrullinated Protein Antibodies/genetics , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Bleomycin/toxicity , Citrullination/genetics , Fibroblasts/metabolism , Gene Expression Regulation/genetics , Humans , Lung/metabolism , Lung/pathology , Lung Injury/chemically induced , Lung Injury/complications , Lung Injury/pathology , Mice , Mice, Transgenic , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Sp1 Transcription Factor/genetics
10.
Nat Commun ; 13(1): 494, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35078977

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.


Subject(s)
Alveolar Epithelial Cells/metabolism , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , A549 Cells , Alveolar Epithelial Cells/classification , Animals , Cells, Cultured , Cluster Analysis , Epithelial Cells/metabolism , Female , Gene Expression Profiling/methods , Gene Regulatory Networks , Humans , Lung/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , Pulmonary Disease, Chronic Obstructive/pathology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL