Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 117: 106299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38945069

ABSTRACT

BACKGROUND: Those who undergo ACL reconstruction are at an increased risk of suffering a second ACL injury. A suggested rationale for the increased injury risk is sensory reweighting to the visual system to compensate for a lack of somatosensory information from the knee. Understanding this proposed visual reliance may help clinicians improve return to sport outcomes and reduce the risk of a subsequent ACL injury. METHODS: Thirteen ACL reconstructed individuals and thirteen matched controls completed two common static postural control assessments under three different visual conditions; eyes open, low visual disruption, and high visual disruption. Center of pressure data was collected for 30 s using force plates. Static postural stability was evaluated using the following: 1) root mean square distance, 2) mean velocity, 3) sway area, and 4) mean frequency. FINDINGS: No significant interactions between group and vision were observed. Significant differences between groups were observed for mean frequency in the double-limb stance (p < .05). Additionally, significant differences were observed for visual conditions in both double-limb (mean velocity; p < .05) and single-limb stances (root mean square distance, mean velocity, sway area, and mean frequency; p < .05). INTERPRETATION: The findings of the current study suggest that ACL reconstructed individuals, who are at least two years removed from surgery, do not rely on visual information to a greater extent than controls during static postural stability assessments. Stroboscopic glasses may be a cost-effective alternative for rehabilitation purposes compared to the traditional binary eyes open vs. eyes closed methods.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Postural Balance , Humans , Male , Anterior Cruciate Ligament Reconstruction/methods , Female , Postural Balance/physiology , Adult , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament/physiopathology , Young Adult
2.
J Biomech ; 168: 112117, 2024 May.
Article in English | MEDLINE | ID: mdl-38669796

ABSTRACT

Hindfoot, midfoot, and forefoot motion during the stance phase of walking provide insights into the forward progression of the body over the feet via the rocker mechanisms. These segmental motions are affected by walking speed. Increases in walking speed are accomplished by increasing step length and cadence. It is unknown if taking short, medium, and long steps at the same speed would increase hindfoot, midfoot, and forefoot motion similarly to walking speed. We examined effects of different step lengths at the same preferred walking speed on peak forefoot, midfoot, and hindfoot motions related to the foot rockers. Twelve young healthy adults completed five walking trials under three step length conditions in a random order as feet and lower extremity motion were measured via marker positions for the combined Oxford foot and conventional gait models. Peak hindfoot, midfoot, and forefoot joint angles indicating heel, ankle, and forefoot rockers were identified. When walking at the same preferred speed with increase in step length, there were increases in peak hindfoot-tibia plantarflexion angle (p < 0.001; ηp2 = 0.76) in early stance associated with the heel rocker and peak hindfoot-tibia dorsiflexion angle (p = 0.016; ηp2 = 0.39) in midstance associated with ankle rocker. In late stance, the peak hindfoot-tibia plantarflexion angle, forefoot-hindfoot angle, and forefoot-hallux dorsiflexion angle indicating forefoot rocker motion also increased with step length (p < 0.01). When foot kinematics are compared across different individuals or the same individual across different sessions, researchers and clinicians should consider the influence of step length as a contributor to differences in foot kinematics observed.


Subject(s)
Foot , Walking Speed , Walking , Humans , Male , Female , Biomechanical Phenomena , Walking Speed/physiology , Foot/physiology , Adult , Young Adult , Walking/physiology , Gait/physiology , Forefoot, Human/physiology , Range of Motion, Articular/physiology
3.
J Electromyogr Kinesiol ; 70: 102772, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37043978

ABSTRACT

Subacromial impingement syndrome (SAIS) is one of the most diagnosed causes of pain in the upper extremity. The purpose of this study was to investigate muscle activity between asymptomatic and SAIS shoulders on the same subject while understanding the effectiveness of EMG biofeedback training (EBFB) on bilateral overhead movements. Ten participants (7 male), that tested positive for 2/3 SAIS clinical tests, volunteered for the study. Bilateral muscle activity was measured via electrodes on the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and lumbar paraspinals (LP). Participants performed bilateral scapular plane overhead movements before and after EBFB. EBFB consisted of 10 bilateral repetitions of I, W, T, and Y exercises focused on reducing UT and increasing LT and SA activity. Prior to EBFB, no significant difference in muscle activity was present between sides. A significant main effect of time indicated that after EBFB both sides exhibited reduced UT activity at 60° (p = 0.003) and 90° (p = 0.036), LT activity was increased at all measured humeral angles (p < 0.0005), and SA muscle activity was increased at 110° (p = 0.001). EBFB in conjunction with scapular based exercise effectively alters muscle activity of asymptomatic and symptomatic scapular musculature.


Subject(s)
Shoulder Impingement Syndrome , Superficial Back Muscles , Humans , Male , Muscle, Skeletal , Electromyography , Biofeedback, Psychology , Shoulder , Scapula/physiology , Superficial Back Muscles/physiology
4.
J Appl Biomech ; 37(6): 611-618, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34872076

ABSTRACT

Individuals returning to sport after anterior cruciate ligament reconstruction (ACLR) are at an increased risk of sustaining a subsequent ACL injury. It is suspected that increased reliance on visual information to maintain stability may factor into this increased risk. The connection between visual reliance and ACLR is not well understood during dynamic tasks. Examination of the proposed visual reliance may help improve returning to sport standards and reduce subsequent ACL injury risk. A total of 12 ACLR individuals and 12 age- and sex-matched controls completed several trials of a normalized dynamic hop task on both limbs under 3 different visual conditions (eyes open, low visual disruption, and high visual disruption). Stroboscopic eyewear were worn by each participant to disrupt vision during testing. Ground reaction force data were collected during landing. Dynamic postural stability was assessed using 2 separate calculations: dynamic postural stability index and time to stability. No significant statistical interactions or group differences were observed. The stroboscopic eyewear did increase the medial-lateral stability index from the eyes open to the low visual disruption condition (P < .05). These findings suggest that ACLR individuals do not rely on visual information more than controls during a dynamic hop task.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Sports , Anterior Cruciate Ligament , Anterior Cruciate Ligament Injuries/surgery , Athletes , Humans
SELECTION OF CITATIONS
SEARCH DETAIL