Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Med Chem ; 67(6): 5064-5074, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38480493

ABSTRACT

Protein-based 18F-PET tracers offer new possibilities in early disease detection and personalized medicine. Their development relies heavily on the availability and effectiveness of 18F-prosthetic groups. We prepared and evaluated a novel arginine-selective prosthetic group, 4-[18F]fluorophenylglyoxal ([18F]FPG). [18F]FPG was radiosynthesized by a one-pot, two-step procedure with a non-decay-corrected (n.d.c.) isolated radiochemical yield (RCY) of 41 ± 8% (n = 10). [18F]FPG constitutes a generic tool for 18F-labeling of various proteins, including human serum albumin (HSA), ubiquitin, interleukin-2, and interleukin-4 in ∼30-60% n.d.c. isolated RCYs. [18F]FPG conjugation with arginine residues is highly selective, even in the presence of a large excess of lysine, cysteine, and histidine. [18F]FPG protein conjugates are able to preserve the binding affinity of the native proteins while also demonstrating excellent in vivo stability. The [18F]FPG-HSA conjugate has prolonged blood retention, which can be applied as a potential blood pool PET imaging agent. Thus, [18F]FPG is an arginine-selective bioconjugation reagent that can be effectively used for the development of 18F-labeled protein radiopharmaceuticals.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiochemistry , Serum Albumin, Human , Ubiquitin , Fluorine Radioisotopes/chemistry
2.
Magn Reson Imaging ; 100: 64-72, 2023 07.
Article in English | MEDLINE | ID: mdl-36933775

ABSTRACT

INTRODUCTION: The classification of prostate cancer (PCa) lesions using Prostate Imaging Reporting and Data System (PI-RADS) suffers from poor inter-reader agreement. This study compared quantitative parameters or radiomic features from multiparametric magnetic resonance imaging (mpMRI) or positron emission tomography (PET), as inputs into machine learning (ML) to predict the Gleason scores (GS) of detected lesions for improved PCa lesion classification. METHODS: 20 biopsy-confirmed PCa subjects underwent imaging before radical prostatectomy. A pathologist assigned GS from tumour tissue. Two radiologists and one nuclear medicine physician delineated the lesions on the mpMR and PET images, yielding 45 lesion inputs. Seven quantitative parameters were extracted from the lesions, namely T2-weighted (T2w) image intensity, apparent diffusion coefficient (ADC), transfer constant (KTRANS), efflux rate constant (Kep), and extracellular volume ratio (Ve) from mpMR images, and SUVmean and SUVmax from PET images. Eight radiomic features were selected out of 109 radiomic features from T2w, ADC and PET images. Quantitative parameters or radiomic features, with risk factors of age, prostate-specific antigen (PSA), PSA density and volume, of 45 different lesion inputs were input in different combinations into four ML models - Decision Tree (DT), Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Ensembles model (EM). RESULTS: SUVmax yielded the highest accuracy in discriminating detected lesions. Among the 4 ML models, kNN yielded the highest accuracies of 0.929 using either quantitative parameters or radiomic features with risk factors as input. CONCLUSIONS: ML models' performance is dependent on the input combinations and risk factors further improve ML classification accuracy.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging/methods , Prostate-Specific Antigen , Neoplasm Grading , Machine Learning , Retrospective Studies
3.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361684

ABSTRACT

The low response rates associated with immune checkpoint inhibitor (ICI) use has led to a surge in research investigating adjuvant combination strategies in an attempt to enhance efficacy. Repurposing existing drugs as adjuvants accelerates the pace of cancer immune therapy research; however, many combinations exacerbate the immunogenic response elicited by ICIs and can lead to adverse immune-related events. Metformin, a widely used type 2 diabetes drug is an ideal candidate to repurpose as it has a good safety profile and studies suggest that metformin can modulate the tumour microenvironment, promoting a favourable environment for T cell activation but has no direct action on T cell activation on its own. In the current study we used PET imaging with [18F]AlF-NOTA-KCNA3P, a radiopharmaceutical specifically targeting KV1.3 the potassium channel over-expressed on active effector memory T-cells, to determine whether combining PD1 with metformin leads to an enhanced immunological memory response in a preclinical colorectal cancer model. Flow cytometry was used to assess which immune cell populations infiltrate the tumours in response to the treatment combination. Imaging with [18F]AlF-NOTA-KCNA3P demonstrated that adjuvant metformin significantly improved anti-PD1 efficacy and led to a robust anti-tumour immunological memory response in a syngeneic colon cancer model through changes in tumour infiltrating effector memory T-cells.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Neoplasms , Humans , Metformin/pharmacology , Metformin/therapeutic use , Memory T Cells , Tumor Microenvironment , Neoplasms/drug therapy , Adjuvants, Immunologic/therapeutic use
4.
Angew Chem Int Ed Engl ; 61(49): e202210917, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36223032

ABSTRACT

We report a general method for the labeling of both CF3 and CF2 H groups in a broad range of chemical settings (aryl, oxide, sulfide). The method utilizes frustrated Lewis pair mediated selective C-F activation to formally substitute fluorine-19 with fluorine-18 in a two-step defluorination/radiofluorination process, and as such can utilize the target compounds as starting materials. The radiotracer precursors can be isolated as stable salts prior to radiofluorination. The method delivers good radiochemical yields and molar activities (up to 35.2±6.5 % non-decay corrected isolated activity yields and 12.0±1.7 GBq µmol-1 molar activities) and is shown to be applicable to biologically relevant compounds. The ability to utilize the target compound as the starting material and the synthetic simplicity of the method coupled with the ever-increasing use of CF3 and CF2 H groups in pharmaceuticals makes this method attractive for drug and radiotracer development.


Subject(s)
Fluorine Radioisotopes , Radiopharmaceuticals , Isotope Labeling , Fluorine Radioisotopes/chemistry , Radiochemistry , Hydrocarbons, Fluorinated , Positron-Emission Tomography
5.
Biomedicines ; 10(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36289605

ABSTRACT

Often, patients fail to respond to immune checkpoint inhibitor (ICI) treatment despite favourable biomarker status. Numerous chemotherapeutic agents have been shown to promote tumour immunogenicity when used in conjunction with ICIs; however, little is known about whether such combination therapies lead to a lasting immune response. Given the potential toxicity of ICI-chemotherapy combinations, identification of biomarkers that accurately predict how individuals respond to specific treatment combinations and whether these responses will be long lasting is of paramount importance. In this study, we explored [18F]AlF-NOTA-KCNA3P, a peptide radiopharmaceutical that targets the Kv1.3 potassium channel overexpressed on T-effector memory (TEM) cells as a PET imaging biomarker for lasting immunological memory response. The first-line colon cancer chemotherapies oxaliplatin and 5-fluorouracil were assessed in a syngeneic colon cancer model, either as monotherapies or in combination with PD1, comparing radiopharmaceutical uptake to memory-associated immune cells in the tumour. [18F]AlF-NOTA-KCNA3P reliably separated tumours with immunological memory responses from non-responding tumours and could be used to measure Kv1.3-expressing TEM cells responsible for durable immunological memory response to combination therapy in vivo.

6.
Br J Radiol ; 95(1138): 20200511, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35930772

ABSTRACT

The resulting pandemic from the novel severe acute respiratory coronavirus 2, SARS-CoV-2 (COVID-19), continues to exert a strain on worldwide health services due to the incidence of hospitalization and mortality associated with infection. The aim of clinical services throughout the period of the pandemic and likely beyond to endemic infections as the situation stabilizes is to enhance safety aspects to mitigate transmission of COVID-19 while providing a high quality of service to all patients (COVID-19 positive and negative) while still upholding excellent medical standards. In order to achieve this, new strategies of clinical service operation are essential. Researchers have published peer-reviewed reference materials such as guidelines, experiences and advice to manage the resulting issues from the unpredictable challenges presented by the pandemic. There is a range of international guidance also from professional medical organizations, including best practice and advice in order to help imaging facilities adjust their standard operating procedures and workflows in line with infection control principles. This work provides a broad review of the main sources of advice and guidelines for radiology and nuclear medicine facilities during the pandemic, and also of rapidly emerging advice and local/national experiences as facilities begin to resume previously canceled non-urgent services as well as effects on imaging research.


Subject(s)
COVID-19 , Nuclear Medicine , Humans , Infection Control/methods , Pandemics/prevention & control , SARS-CoV-2
7.
Contrast Media Mol Imaging ; 2022: 6113660, 2022.
Article in English | MEDLINE | ID: mdl-35694709

ABSTRACT

Browning of white adipose tissue (WAT) into beige adipocytes has been proposed as a strategy to tackle the ongoing obesity epidemic. Thermogenic stimuli have been investigated with the aim of converting existing white adipose tissue, primarily used for energy storage, into beige adipocytes capable of dissipating energy; however, evaluation is complicated by the dearth of noninvasive methodologies to quantify de novo beige adipocytes in WAT. Imaging with [18F]FDG is commonly used to measure brown adipose tissue (BAT) and beige adipocytes but the relationship between beige adipocytes, thermogenesis and [18F]FDG uptake is unclear. [18F]BCPP-EF, a tracer for mitochondrial complex-I (MC-I), acts as a marker of oxidative metabolism and may be useful for the detection of newly formed beige adipocytes. Mice received doses of the ß3-adrenergic agonist CL-316,243 subchronically for 7 days to induce formation of beige adipocytes in inguinal white fat. PET imaging was performed longitudinally with both [18F]FDG (a marker of glycolysis) and [18F]BCPP-EF (an MC-I marker) to assess the effect of thermogenic stimulation on uptake in browning inguinal WAT and interscapular BAT. Treatment with CL-316,243 led to significant increases in both [18F]FDG and [18F]BCPP-EF in inguinal WAT. The uptake of [18F]BCPP-EF in inguinal WAT was significantly increased above control levels after 3 days of stimulation, whereas [18F]FDG only showed a significant increase after 7 days. The uptake of [18F]BCPP-EF in newly formed beige adipocytes was blocked by pretreatment with an adrenoceptor antagonist suggesting that beige adipocyte formation may be associated with the activation of MC-I. However, in BAT, uptake of [18F]BCPP-EF was unaffected by ß3-adrenergic stimulation, potentially due to the high expression of MC-I. [18F]BCPP-EF can detect newly formed beige adipocytes in WAT generated after subchronic treatment with the ß3-adrenergic agonist CL-316,243 and displays both higher inguinal WAT uptake and earlier detection than [18F]FDG. The MC-I tracer may be a useful tool in the evaluation of new therapeutic strategies targeting metabolic adipose tissues to tackle obesity and metabolic diseases.


Subject(s)
Adipose Tissue, Brown , Fluorodeoxyglucose F18 , Adipose Tissue, Brown/diagnostic imaging , Adipose Tissue, Brown/metabolism , Adrenergic Agonists/metabolism , Adrenergic Agonists/pharmacology , Animals , Fluorodeoxyglucose F18/metabolism , Mice , Obesity/diagnostic imaging , Positron-Emission Tomography
8.
J Hypertens ; 40(6): 1179-1188, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35703880

ABSTRACT

OBJECTIVE: Adrenal vein sampling (AVS) is recommended to subtype primary aldosteronism, but it is technically challenging. We compared 11C-Metomidate-PET-computed tomography (PET-CT) and AVS for subtyping of primary aldosteronism. METHODS: Patients with confirmed primary aldosteronism underwent both AVS and 11C-Metomidate PET-CT (post-dexamethasone). All results were reviewed at a multidisciplinary meeting to decide on final subtype diagnosis. Primary outcome was accuracy of PET versus AVS to diagnosis of unilateral primary aldosteronism based on post-surgical biochemical cure. Secondary outcome was accuracy of both tests to final subtype diagnosis. RESULTS: All 25 patients recruited underwent PET and successful AVS (100%). Final diagnosis was unilateral in 22 patients, bilateral in two and indeterminate in one due to discordant lateralization. Twenty patients with unilateral primary aldosteronism underwent surgery, with 100% complete biochemical success, and 75% complete/partial clinical success. For the primary outcome, sensitivity of PET was 80% [95% confidence interval (95% CI): 56.3-94.3] and AVS was 75% (95% CI: 50.9-91.3). For the secondary outcome, sensitivity and specificity of PET was 81.9% (95% CI: 59.7-94.8) and 100% (95% CI: 15.8-100), and AVS was 68.2% (95% CI: 45.1-86.1) and 100% (95% CI: 15.8-100), respectively. Twelve out of 20 (60%) patients had both PET and AVS lateralization, four (20%) PET-only, three (15%) AVS-only, while one patient did not lateralize on PET or AVS. Post-surgery outcomes did not differ between patients identified by either test. CONCLUSION: In our pilot study, 11C-Metomidate PET-CT performed comparably to AVS, and this should be validated in larger studies. PET identified patients with unilateral primary aldosteronism missed on AVS, and these tests could be used together to identify more patients with unilateral primary aldosteronism. VIDEO ABSTRACT: http://links.lww.com/HJH/B918.


Subject(s)
Hyperaldosteronism , Adrenal Glands/blood supply , Aldosterone , Carbon Radioisotopes , Etomidate/analogs & derivatives , Humans , Hyperaldosteronism/diagnostic imaging , Hyperaldosteronism/surgery , Pilot Projects , Positron Emission Tomography Computed Tomography , Prospective Studies , Retrospective Studies
9.
Neuroinformatics ; 20(4): 1065-1075, 2022 10.
Article in English | MEDLINE | ID: mdl-35622223

ABSTRACT

Automated amyloid-PET image classification can support clinical assessment and increase diagnostic confidence. Three automated approaches using global cut-points derived from Receiver Operating Characteristic (ROC) analysis, machine learning (ML) algorithms with regional SUVr values, and deep learning (DL) network with 3D image input were compared under various conditions: number of training data, radiotracers, and cohorts. 276 [11C]PiB and 209 [18F]AV45 PET images from ADNI database and our local cohort were used. Global mean and maximum SUVr cut-points were derived using ROC analysis. 68 ML models were built using regional SUVr values and one DL network was trained with classifications of two visual assessments - manufacturer's recommendations (gray-scale) and with visually guided reference region scaling (rainbow-scale). ML-based classification achieved similarly high accuracy as ROC classification, but had better convergence between training and unseen data, with a smaller number of training data. Naïve Bayes performed the best overall among the 68 ML algorithms. Classification with maximum SUVr cut-points yielded higher accuracy than with mean SUVr cut-points, particularly for cohorts showing more focal uptake. DL networks can support the classification of definite cases accurately but performed poorly for equivocal cases. Rainbow-scale standardized image intensity scaling and improved inter-rater agreement. Gray-scale detects focal accumulation better, thus classifying more amyloid-positive scans. All three approaches generally achieved higher accuracy when trained with rainbow-scale classification. ML yielded similarly high accuracy as ROC, but with better convergence between training and unseen data, and further work may lead to even more accurate ML methods.


Subject(s)
Alzheimer Disease , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Alzheimer Disease/diagnostic imaging , Aniline Compounds , Bayes Theorem , Algorithms
10.
Cancers (Basel) ; 14(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35267526

ABSTRACT

Immune checkpoint inhibitors have shown great promise, emerging as a new pillar of treatment for cancer; however, only a relatively small proportion of recipients show a durable response to treatment. Strategies that reliably differentiate durably-responding tumours from non-responsive tumours are a critical unmet need. Persistent and durable immunological responses are associated with the generation of memory T cells. Effector memory T cells associated with tumour response to immune therapies are characterized by substantial upregulation of the potassium channel Kv1.3 after repeated antigen stimulation. We have developed a new Kv1.3 targeting radiopharmaceutical, [18F]AlF-NOTA-KCNA3P, and evaluated whether it can reliably differentiate tumours successfully responding to immune checkpoint inhibitor (ICI) therapy targeting PD-1 alone or combined with CLTA4. In a syngeneic colon cancer model, we compared tumour retention of [18F]AlF-NOTA-KCNA3P with changes in the tumour immune microenvironment determined by flow cytometry. Imaging with [18F]AlF-NOTA-KCNA3P reliably differentiated tumours responding to ICI therapy from non-responding tumours and was associated with substantial tumour infiltration of T cells, especially Kv1.3-expressing CD8+ effector memory T cells.

11.
Pharmaceutics ; 14(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35057046

ABSTRACT

Immune checkpoint inhibitors (ICIs) block checkpoint receptors that tumours use for immune evasion, allowing immune cells to target and destroy cancer cells. Despite rapid advancements in immunotherapy, durable response rates to ICIs remains low. To address this, combination clinical trials are underway assessing whether adjuvants can enhance responsiveness by increasing tumour immunogenicity. CpG-oligodeoxynucleotides (CpG-ODN) are synthetic DNA fragments containing an unmethylated cysteine-guanosine motif that stimulate the innate and adaptive immune systems by engaging Toll-like receptor 9 (TLR9) present on the plasmacytoid dendritic cells (pDCs) and B cells. Here, we have assessed the ability of AlF-mNOTA-GZP, a peptide tracer targeting granzyme B, to serve as a PET imaging biomarker in response to CpG-ODN 1585 in situ vaccine therapy delivered intratumourally (IT) or intraperitoneally (IP) either as monotherapy or in combination with αPD1. [18F]AlF-mNOTA-GZP was able to differentiate treatment responders from non-responders based on tumour uptake. Furthermore, [18F]AlF-mNOTA-GZP showed positive associations with changes in tumour-associated lymphocytes expressing GZB, namely GZB+ CD8+ T cells, and decreases in suppressive F4/80+ cells. [18F]AlF-mNOTA-GZP tumour uptake was mediated by GZB expressing CD8+ cells and successfully stratifies therapy responders from non-responders, potentially acting as a non-invasive biomarker for ICIs and combination therapy evaluation in a clinical setting.

12.
Nucl Med Commun ; 2021 08 17.
Article in English | MEDLINE | ID: mdl-34406144

ABSTRACT

OBJECTIVE: 11C-metomidate (11C-MTO) PET-computed tomography (CT) imaging has shown good sensitivity and specificity for the classification of bilateral or unilateral overexpression of aldosterone. This work seeks to investigate the usefulness of parametric maps via kinetic modeling of 11C-metomidate data into the clinical diagnosis pathway. METHODS: Twenty-five patients were injected with 172 ± 12 MBq of 11C-metomidate and a dynamic PET scan performed of the adrenal glands. A blood time-activity curve was drawn from a volume of interest in the left ventricle and converted to a plasma time-activity curve. Metabolite correction was performed with a population-based correction. We performed regional-based graphical Patlak analysis to calculate the regional uptake rate constant Ki(REG), and also calculated parametric maps of Ki(VOX) using a voxel-based technique. RESULTS: Comparison of Ki(REG), and the maximum lesion voxel from parametric maps Ki(mVOX) demonstrated a high correlation for all subjects (r2 = 0.96). Ki(mVOX) allowed differentiation between cases of active and inactive unilateral adenoma when compared to bilateral hyperplasia (P < 0.017), a feature not observed with standardized uptake ratios (SUVmax) analysis. Ki(mVOX) demonstrated a poor correlation of 0.68 with SUVmax, indicating the differences through the use of static and dynamic imaging. Three false-negative cases based on SUV analysis indicated that Ki(mVOX) was able to successfully differentiate the clinical presentation for these cases. CONCLUSION: Our work demonstrates that parametric Ki(VOX) was able to successfully differentiate between patients with bilateral hyperplasia and patients with unilateral adrenal adenoma in our cohort and that Ki may be considered be an additional useful metric to SUV in 11C-metomidate PET-CT imaging.

13.
Infect Immun ; 89(10): e0002421, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34251290

ABSTRACT

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a severe complication of malaria that occurs despite effective antimalarial treatment. Currently, noninvasive imaging procedures such as chest X-rays are used to assess edema in established MA-ARDS, but earlier detection methods are needed to reduce morbidity and mortality. The early stages of MA-ARDS are characterized by the infiltration of leukocytes, in particular monocytes/macrophages; thus, monitoring of immune infiltrates may provide a useful indicator of early pathology. In this study, Plasmodium berghei ANKA-infected C57BL/6 mice, a rodent model of MA-ARDS, were longitudinally imaged using the 18-kDa translocator protein (TSPO) imaging agent [18F]FEPPA as a marker of macrophage accumulation during the development of pathology and in response to combined artesunate and chloroquine diphosphate (ART+CQ) therapy. [18F]FEPPA uptake was compared to blood parasitemia levels and to levels of pulmonary immune cell infiltrates by using flow cytometry. Infected animals showed rapid increases in lung retention of [18F]FEPPA, correlating well with increases in blood parasitemia and pulmonary accumulation of interstitial inflammatory macrophages and major histocompatibility complex class II (MHC-II)-positive alveolar macrophages. Treatment with ART+CQ abrogated this increase in parasitemia and significantly reduced both lung uptake of [18F]FEPPA and levels of macrophage infiltrates. We conclude that retention of [18F]FEPPA in the lungs is well correlated with changes in blood parasitemia and levels of lung-associated macrophages during disease progression and in response to ART+CQ therapy. With further development, TSPO biomarkers may have the potential to accurately assess the early onset of MA-ARDS.


Subject(s)
Biomarkers/metabolism , Lung/metabolism , Malaria/metabolism , Pneumonia/metabolism , Animals , Disease Models, Animal , Leukocytes/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Plasmodium berghei/pathogenicity , Positron-Emission Tomography/methods , Respiratory Distress Syndrome/metabolism
14.
Alzheimers Dement ; 17(10): 1649-1662, 2021 10.
Article in English | MEDLINE | ID: mdl-33792168

ABSTRACT

INTRODUCTION: There is increasing evidence that phosphorylated tau (P-tau181) is a specific biomarker for Alzheimer's disease (AD) pathology, but its potential utility in non-White patient cohorts and patients with concomitant cerebrovascular disease (CeVD) is unknown. METHODS: Single molecule array (Simoa) measurements of plasma P-tau181, total tau, amyloid beta (Aß)40 and Aß42, as well as derived ratios were correlated with neuroimaging modalities indicating brain amyloid (Aß+), hippocampal atrophy, and CeVD in a Singapore-based cohort of non-cognitively impaired (NCI; n = 43), cognitively impaired no dementia (CIND; n = 91), AD (n = 44), and vascular dementia (VaD; n = 22) subjects. RESULTS: P-tau181/Aß42 ratio showed the highest area under the curve (AUC) for Aß+ (AUC = 0.889) and for discriminating between AD Aß+ and VaD Aß- subjects (AUC = 0.903). In addition, P-tau181/Aß42 ratio was associated with hippocampal atrophy. None of the biomarkers was associated with CeVD. DISCUSSION: Plasma P-tau181/Aß42 ratio may be a noninvasive means of identifying AD with elevated brain amyloid in populations with concomitant CeVD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/blood , Asian People/statistics & numerical data , Cerebrovascular Disorders/complications , Peptide Fragments/blood , tau Proteins/blood , Aged , Alzheimer Disease/blood , Alzheimer Disease/pathology , Atrophy/pathology , Biomarkers/blood , Brain/pathology , Cognitive Dysfunction/pathology , Cohort Studies , Hippocampus/pathology , Humans , Phosphorylation , Positron-Emission Tomography , Singapore
15.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808813

ABSTRACT

Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.


Subject(s)
Colonic Neoplasms , Interleukin-2 , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms, Experimental , Positron-Emission Tomography , Radiopharmaceuticals , T-Lymphocytes/metabolism , Animals , Cell Line, Tumor , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Interleukin-2/chemistry , Interleukin-2/pharmacology , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , T-Lymphocytes/pathology , Tumor Microenvironment/drug effects
16.
Mol Imaging Biol ; 23(5): 714-723, 2021 10.
Article in English | MEDLINE | ID: mdl-33713000

ABSTRACT

PURPOSE: Chemotherapeutic adjuvants, such as oxaliplatin (OXA) and 5-fluorouracil (5-FU), that enhance the immune system, are being assessed as strategies to improve durable response rates when used in combination with immune checkpoint inhibitor (ICI) monotherapy in cancer patients. In this study, we explored granzyme B (GZB), released by tumor-associated immune cells, as a PET imaging-based stratification marker for successful combination therapy using a fluorine-18 (18F)-labelled GZB peptide ([18F]AlF-mNOTA-GZP). METHODS: Using the immunocompetent CT26 syngeneic mouse model of colon cancer, we assessed the potential for [18F]AlF-mNOTA-GZP to stratify OXA/5-FU and ICI combination therapy response via GZB PET. In vivo tumor uptake of [18F]AlF-mNOTA-GZP in different treatment arms was quantified by PET, and linked to differences in tumor-associated immune cell populations defined by using multicolour flow cytometry. RESULTS: [18F]AlF-mNOTA-GZP tumor uptake was able to clearly differentiate treatment responders from non-responders when stratified based on changes in tumor volume. Furthermore, [18F]AlF-mNOTA-GZP showed positive associations with changes in tumor-associated lymphocytes expressing GZB, namely GZB+ CD8+ T cells and GZB+ NK+ cells. CONCLUSIONS: [18F]AlF-mNOTA-GZP tumor uptake, driven by changes in immune cell populations expressing GZB, is able to stratify tumor response to chemotherapeutics combined with ICIs. Our results show that, while the immunomodulatory mode of action of the chemotherapies may be different, the ultimate mechanism of tumor lysis through release of Granzyme B is an accurate biomarker for treatment response.


Subject(s)
Colonic Neoplasms , Granzymes/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Positron-Emission Tomography , Animals , Cell Line, Tumor , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Disease Models, Animal , Lymphocytes, Tumor-Infiltrating/metabolism , Mice
17.
Eur J Nucl Med Mol Imaging ; 48(6): 1842-1853, 2021 06.
Article in English | MEDLINE | ID: mdl-33415430

ABSTRACT

PURPOSE: Standardized uptake value ratio (SUVr) used to quantify amyloid-ß burden from amyloid-PET scans can be biased by variations in the tracer's nonspecific (NS) binding caused by the presence of cerebrovascular disease (CeVD). In this work, we propose a novel amyloid-PET quantification approach that harnesses the intermodal image translation capability of convolutional networks to remove this undesirable source of variability. METHODS: Paired MR and PET images exhibiting very low specific uptake were selected from a Singaporean amyloid-PET study involving 172 participants with different severities of CeVD. Two convolutional neural networks (CNN), ScaleNet and HighRes3DNet, and one conditional generative adversarial network (cGAN) were trained to map structural MR to NS PET images. NS estimates generated for all subjects using the most promising network were then subtracted from SUVr images to determine specific amyloid load only (SAßL). Associations of SAßL with various cognitive and functional test scores were then computed and compared to results using conventional SUVr. RESULTS: Multimodal ScaleNet outperformed other networks in predicting the NS content in cortical gray matter with a mean relative error below 2%. Compared to SUVr, SAßL showed increased association with cognitive and functional test scores by up to 67%. CONCLUSION: Removing the undesirable NS uptake from the amyloid load measurement is possible using deep learning and substantially improves its accuracy. This novel analysis approach opens a new window of opportunity for improved data modeling in Alzheimer's disease and for other neurodegenerative diseases that utilize PET imaging.


Subject(s)
Alzheimer Disease , Deep Learning , Amyloid/metabolism , Amyloid beta-Peptides , Aniline Compounds , Brain/metabolism , Humans , Positron-Emission Tomography
18.
Mol Imaging ; 2021: 9305277, 2021.
Article in English | MEDLINE | ID: mdl-35936114

ABSTRACT

Hepatocellular carcinoma (HCC) is a notoriously difficult cancer to treat. The recent development of immune checkpoint inhibitors has revolutionised HCC therapy; however, successful response is only observed in a small percentage of patients. Biomarkers typically used to predict treatment response in other tumour types are ineffective in HCC, which arises in an immune-suppressive environment. However, imaging markers that measure changes in tumour infiltrating immune cells may supply information that can be used to determine which patients are responding to therapy posttreatment. We have evaluated [18F]AlF-mNOTA-GZP, a radiolabeled peptide targeting granzyme B, to stratify response to ICIs in a HEPA 1-tumours, a syngeneic model of HCC. Posttherapy, in vivo tumour retention of [18F]AlF-mNOTA-GZP was correlated to changes in tumour volume and tumour-infiltrating immune cells. [18F]AlF-mNOTA-GZP successfully stratified response to immune checkpoint inhibition in the syngeneic HEPA 1-6 model. FACS indicated significant changes in the immune environment including a decrease in immune suppressive CD4+ T regulatory cells and increases in tumour-associated GZB+ NK+ cells, which correlated well with tumour radiopharmaceutical uptake. While the immune response to ICI therapies differs in HCC compared to many other cancers, [18F]AlF-mNOTA-GZP retention is able to stratify response to ICI therapy associated with tumour infiltrating GZB+ NK+ cells in this complex tumour microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Granzymes/therapeutic use , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Positron-Emission Tomography , Tumor Microenvironment
19.
Eur J Neurol ; 28(5): 1479-1489, 2021 05.
Article in English | MEDLINE | ID: mdl-33370497

ABSTRACT

BACKGROUND AND PURPOSE: Various blood biomarkers reflecting brain amyloid-ß (Aß) load have recently been proposed with promising results. However, to date, no comparative study amongst blood biomarkers has been reported. Our objective was to examine the diagnostic performance and cost effectiveness of three blood biomarkers on the same cohort. METHODS: Using the same cohort (n = 68), the performances of the single-molecule array (Simoa) Aß40, Aß42, Aß42/Aß40 and the amplified plasmonic exosome (APEX) Aß42 blood biomarkers were compared using amyloid positron emission tomography (PET) as the reference standard. The extent to which these blood tests can reduce the recruitment cost of clinical trials was also determined by identifying amyloid positive (Aß+) participants. RESULTS: Compared to Simoa biomarkers, APEX-Aß42 showed significantly higher correlations with amyloid PET retention values and excellent diagnostic performance (sensitivity 100%, specificity 93.3%, area under the curve 0.995). When utilized for clinical trial recruitment, our simulation showed that pre-screening with blood biomarkers followed by a confirmatory amyloid PET imaging would roughly half the cost (56.8% reduction for APEX-Aß42 and 48.6% for Simoa-Aß42/Aß40) compared to the situation where only PET imaging is used. Moreover, with 100% sensitivity, APEX-Aß42 pre-screening does not increase the required number of initial participants. CONCLUSIONS: With its high diagnostic performance, APEX is an ideal candidate for Aß+ subject identification, monitoring and primary care screening, and could efficiently enrich clinical trials with Aß+ participants whilst halving recruitment costs.


Subject(s)
Alzheimer Disease , Exosomes , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Biomarkers , Humans , Immunoassay , Peptide Fragments
20.
Stem Cell Res Ther ; 11(1): 347, 2020 08 08.
Article in English | MEDLINE | ID: mdl-32771055

ABSTRACT

BACKGROUND: Significant developments in stem cell therapy for Parkinson's disease (PD) have already been achieved; however, methods for reliable assessment of dopamine neuron maturation in vivo are lacking. Establishing the efficacy of new cellular therapies using non-invasive methodologies will be critical for future regulatory approval and application. The current study examines the utility of neuroimaging to characterise the in vivo maturation, innervation and functional dopamine release of transplanted human embryonic stem cell-derived midbrain dopaminergic neurons (hESC-mDAs) in a preclinical model of PD. METHODS: Female NIH RNu rats received a unilateral stereotaxic injection of 6-OHDA into the left medial forebrain bundle to create the PD lesion. hESC-mDA cell and sham transplantations were carried out 1 month post-lesion, with treated animals receiving approximately 4 × 105 cells per transplantation. Behavioural analysis, [18F]FBCTT and [18F]fallypride microPET/CT, was conducted at 1, 3 and 6 months post-transplantation and compared with histological characterisation at 6 months. RESULTS: PET imaging revealed transplant survival and maturation into functional dopaminergic neurons. [18F]FBCTT-PET/CT dopamine transporter (DAT) imaging demonstrated pre-synaptic restoration and [18F]fallypride-PET/CT indicated functional dopamine release, whilst amphetamine-induced rotation showed significant behavioural recovery. Moreover, histology revealed that the grafted cells matured differently in vivo producing high- and low-tyrosine hydroxylase (TH) expressing cohorts, and only [18F]FBCTT uptake was well correlated with differentiation. CONCLUSIONS: This study provides further evidence for the value of in vivo functional imaging for the assessment of cell therapies and highlights the utility of DAT imaging for the determination of early post-transplant cell maturation and differentiation of hESC-mDAs.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , Positron Emission Tomography Computed Tomography , Animals , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins , Female , Neuroimaging , Oxidopamine , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...