Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Genet Mol Biol ; 44(4): e20210149, 2021.
Article in English | MEDLINE | ID: mdl-34807224

ABSTRACT

Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.

2.
NPJ Genom Med ; 6(1): 47, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34127679

ABSTRACT

The cardiac troponin T variations have often been used as an example of the application of clinical genotyping for prognostication and risk stratification measures for the management of patients with a family history of sudden cardiac death or familial cardiomyopathy. Given the disparity in patient outcomes and therapy options, we investigated the impact of variations on the intermolecular interactions across the thin filament complex as an example of an unbiased systems biology method to better define clinical prognosis to aid future management options. We present a novel unbiased dynamic model to define and analyse the functional, structural and physico-chemical consequences of genetic variations among the troponins. This was subsequently integrated with clinical data from accessible global multi-centre systematic reviews of familial cardiomyopathy cases from 106 articles of the literature: 136 disease-causing variations pertaining to 981 global clinical cases. Troponin T variations showed distinct pathogenic hotspots for dilated and hypertrophic cardiomyopathies; considering the causes of cardiovascular death separately, there was a worse survival in terms of sudden cardiac death for patients with a variation at regions 90-129 and 130-179 when compared to amino acids 1-89 and 200-288. Our data support variations among 90-130 as being a hotspot for sudden cardiac death and the region 131-179 for heart failure death/transplantation outcomes wherein the most common phenotype was dilated cardiomyopathy. Survival analysis into regions of high risk (regions 90-129 and 130-180) and low risk (regions 1-89 and 200-288) was significant for sudden cardiac death (p = 0.011) and for heart failure death/transplant (p = 0.028). Our integrative genomic, structural, model from genotype to clinical data integration has implications for enhancing clinical genomics methodologies to improve risk stratification.

3.
Sci Rep ; 10(1): 20254, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219268

ABSTRACT

Acyl-CoAs are reactive metabolites that can non-enzymatically S-acylate and N-acylate protein cysteine and lysine residues, respectively. N-acylation is irreversible and enhanced if a nearby cysteine residue undergoes an initial reversible S-acylation, as proximity leads to rapid S → N-transfer of the acyl moiety. We reasoned that protein-bound acyl-CoA could also facilitate S → N-transfer of acyl groups to proximal lysine residues. Furthermore, as CoA contains an ADP backbone this may extend beyond CoA-binding sites and include abundant Rossmann-fold motifs that bind the ADP moiety of NADH, NADPH, FADH and ATP. Here, we show that excess nucleotides decrease protein lysine N-acetylation in vitro. Furthermore, by generating modelled structures of proteins N-acetylated in mouse liver, we show that proximity to a nucleotide-binding site increases the risk of N-acetylation and identify where nucleotide binding could enhance N-acylation in vivo. Finally, using glutamate dehydrogenase as a case study, we observe increased in vitro lysine N-malonylation by malonyl-CoA near nucleotide-binding sites which overlaps with in vivo N-acetylation and N-succinylation. Furthermore, excess NADPH, GTP and ADP greatly diminish N-malonylation near their nucleotide-binding sites, but not at distant lysine residues. Thus, lysine N-acylation by acyl-CoAs is enhanced by nucleotide-binding sites and may contribute to higher stoichiometry protein N-acylation in vivo.


Subject(s)
Lysine/metabolism , Nucleotides/metabolism , Acetylation , Acylation , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Flavin-Adenine Dinucleotide/metabolism , NAD/metabolism
4.
Neurol Genet ; 6(6): e521, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33134517

ABSTRACT

OBJECTIVE: To expand the clinical phenotype of POLR3A mutations by assessing the functional consequences of a missense and a splicing acceptor mutation. METHODS: We performed whole-exome sequencing for identification of likely pathogenic mutations in a 9-year-old female patient with severe generalized dystonia, metabolic acidosis, leukocytosis, hypotonia, and dysphagia. Brain MRI showed basal ganglia atrophy and presence of lactate and lipid peaks by [1H]-magnetic resonance spectroscopy. Expression levels of Pol III target genes were measured by quantitative real-time (qRT)-PCR to study the pathogenicity of the biallelic mutations in patient fibroblasts. RESULTS: The patient is a compound heterozygous for a novel missense c.3721G>A (p.Val1241Met) and the splicing region c.1771-6C>G mutation in POLR3A, the gene coding for the catalytic subunit of RNA polymerase III (Pol III). Aberrant splicing was observed for the c.1771-6C>G mutation. Decreased RNA expression levels of Pol III targets (HNRNPH2, ubiquitin B, lactotransferrin, and HSP90AA1) were observed in patient fibroblasts with rescue to normal levels by overexpression of the wild-type protein but not by the p.Val1241Met variant. CONCLUSIONS: Mutations in the POLR3A gene cause POLR3A-related hypomyelinating leukodystrophy with or without oligodontia or hypogonadotropic hypogonadism (HLD7, OMIM: 607694) and neonatal progeroid syndrome (OMIM: 264090), both with high phenotypic variability. We demonstrated the pathogenicity of c.1771-6C>G and c.3721G>A mutations causing an early-onset disorder. The phenotype of our patient expands the clinical presentation of POLR3A-related mutations and suggests a new classification that we propose designating as Neurodevelopmental Disorder with Regression, Abnormal Movements, and Increased Lactate.

5.
EMBO Mol Med ; 12(3): e11589, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32107855

ABSTRACT

Mitochondrial disorders affect 1/5,000 and have no cure. Inducing mitochondrial biogenesis with bezafibrate improves mitochondrial function in animal models, but there are no comparable human studies. We performed an open-label observational experimental medicine study of six patients with mitochondrial myopathy caused by the m.3243A>G MTTL1 mutation. Our primary aim was to determine the effects of bezafibrate on mitochondrial metabolism, whilst providing preliminary evidence of safety and efficacy using biomarkers. The participants received 600-1,200 mg bezafibrate daily for 12 weeks. There were no clinically significant adverse events, and liver function was not affected. We detected a reduction in the number of complex IV-immunodeficient muscle fibres and improved cardiac function. However, this was accompanied by an increase in serum biomarkers of mitochondrial disease, including fibroblast growth factor 21 (FGF-21), growth and differentiation factor 15 (GDF-15), plus dysregulation of fatty acid and amino acid metabolism. Thus, although potentially beneficial in short term, inducing mitochondrial biogenesis with bezafibrate altered the metabolomic signature of mitochondrial disease, raising concerns about long-term sequelae.


Subject(s)
Bezafibrate/pharmacology , Mitochondria/metabolism , Mitochondrial Myopathies/drug therapy , Humans , Mitochondrial Myopathies/metabolism , Organelle Biogenesis
6.
Mol Genet Metab ; 129(1): 26-34, 2020 01.
Article in English | MEDLINE | ID: mdl-31787496

ABSTRACT

NUBPL (Nucleotide-binding protein like) protein encodes a member of the Mrp/NBP35 ATP-binding proteins family, deemed to be involved in mammalian complex I (CI) assembly process. Exome sequencing of a patient presenting with infantile-onset hepatopathy, renal tubular acidosis, developmental delay, short stature, leukoencephalopathy with minimal cerebellar involvement and multiple OXPHOS deficiencies revealed the presence of two novel pathogenic compound heterozygous variants in NUBPL (p.Phe242Leu/p.Leu104Pro). We investigated patient's and control immortalised fibroblasts and demonstrated that both the peripheral and the membrane arms of complex I are undetectable in mutant NUBPL cells, resulting in virtually absent CI holocomplex and loss of enzyme activity. In addition, complex III stability was moderately affected as well. Lentiviral-mediated expression of the wild-type NUBPL cDNA rescued both CI and CIII assembly defects, confirming the pathogenicity of the variants. In conclusion, this is the first report describing a complex multisystemic disorder due to NUBPL defect. In addition, we confirmed the role of NUBPL in Complex I assembly associated with secondary effect on Complex III stability and we demonstrated a defect of mtDNA-related translation which suggests a potential additional role of NUBPL in mtDNA expression.


Subject(s)
Genetic Variation , Heterozygote , Leukoencephalopathies/genetics , Mitochondrial Proteins/genetics , Adolescent , Adult , Brain/diagnostic imaging , Brain/pathology , Child , DNA, Mitochondrial , Female , Humans , Infant , Infant, Newborn , Leukoencephalopathies/diagnosis , Magnetic Resonance Imaging , Male , Mitochondria/pathology , Mutation , Young Adult
7.
Nucleic Acids Res ; 47(D1): D1225-D1228, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30398659

ABSTRACT

Increasing numbers of diseases are associated with mitochondrial dysfunction. This is unsurprising given mitochondria have major roles in bioenergy generation, signalling, detoxification, apoptosis and biosynthesis. However, fundamental questions of mitochondrial biology remain, including: which nuclear genes encode mitochondrial proteins; how their expression varies with tissue; and which are associated with disease. But experiments to catalogue the mitochondrial proteome are incomplete and sometimes contradictory. This arises because the mitochondrial proteome has tissue- and stage-specific variability, plus differences among experimental techniques and localization evidence types used. This leads to limitations in each technique's coverage and inevitably conflicting results. To support identification of mitochondrial proteins, we developed MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/), a database combining evidence of mitochondrial localization with information from public resources. Here we report upgrades to MitoMiner, including its re-engineering to be gene-centric to enable easier sharing of evidence among orthologues and support next generation sequencing, plus new data sources, including expression in different tissues, information on phenotypes and diseases of genetic mutations and a new mitochondrial proteome catalogue. MitoMiner is a powerful platform to investigate mitochondrial localization by providing a unique combination of experimental sub-cellular localization datasets, tissue expression, predictions of mitochondrial targeting sequences, gene annotation and links to phenotype and disease.


Subject(s)
Computational Biology/methods , Databases, Factual , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/metabolism , Data Management/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Internet , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Phenotype , Proteome/genetics , Proteome/metabolism , Proteomics/methods
8.
Nat Metab ; 1: 966-974, 2019 09 30.
Article in English | MEDLINE | ID: mdl-32395697

ABSTRACT

During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.


Subject(s)
Organ Transplantation , Reperfusion Injury/metabolism , Succinic Acid/metabolism , Animals , Humans , Mice , Swine
9.
EMBO Mol Med ; 10(10)2018 10.
Article in English | MEDLINE | ID: mdl-30190335

ABSTRACT

TIMM50 is an essential component of the TIM23 complex, the mitochondrial inner membrane machinery that imports cytosolic proteins containing a mitochondrial targeting presequence into the mitochondrial inner compartment. Whole exome sequencing (WES) identified compound heterozygous pathogenic mutations in TIMM50 in an infant patient with rapidly progressive, severe encephalopathy. Patient fibroblasts presented low levels of TIMM50 and other components of the TIM23 complex, lower mitochondrial membrane potential, and impaired TIM23-dependent protein import. As a consequence, steady-state levels of several components of mitochondrial respiratory chain were decreased, resulting in decreased respiration and increased ROS production. Growth of patient fibroblasts in galactose shifted energy production metabolism toward oxidative phosphorylation (OxPhos), producing an apparent improvement in most of the above features but also increased apoptosis. Complementation of patient fibroblasts with TIMM50 improved or restored these features to control levels. Moreover, RNASEH1 and ISCU mutant fibroblasts only shared a few of these features with TIMM50 mutant fibroblasts. Our results indicate that mutations in TIMM50 cause multiple mitochondrial bioenergetic dysfunction and that functional TIMM50 is essential for cell survival in OxPhos-dependent conditions.


Subject(s)
Brain Diseases/physiopathology , Membrane Transport Proteins/genetics , Mitochondrial Diseases/physiopathology , Mutation , Oxidative Phosphorylation , Brain Diseases/diagnosis , Brain Diseases/pathology , Cell Survival , Cells, Cultured , Female , Fibroblasts/pathology , Genetic Complementation Test , Humans , Infant , Italy , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/pathology , Mitochondrial Precursor Protein Import Complex Proteins
10.
Cell Rep ; 24(6): 1445-1455, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30089256

ABSTRACT

Acetyl-coenzyme A (CoA) is an abundant metabolite that can also alter protein function through non-enzymatic N-acetylation of protein lysines. This N-acetylation is greatly enhanced in vitro if an adjacent cysteine undergoes initial S-acetylation, as this can lead to S→N transfer of the acetyl moiety. Here, using modeled mouse structures of 619 proteins N-acetylated in mouse liver, we show lysine N-acetylation is greater in vivo if a cysteine is within ∼10 Å. Extension to the genomes of 52 other mammalian and bird species shows pairs of proximal cysteine and N-acetylated lysines are less conserved, implying most N-acetylation is detrimental. Supporting this, there is less conservation of cytosolic pairs of proximal cysteine and N-acetylated lysines in species with longer lifespans. As acetyl-CoA levels are linked to nutrient supply, these findings suggest how dietary restriction could extend lifespan and how pathologies resulting from dietary excess may occur.


Subject(s)
Cysteine/metabolism , Cytosol/metabolism , Lysine/metabolism , Acetylation , Animals , Mice
11.
Trends Biochem Sci ; 43(11): 921-932, 2018 11.
Article in English | MEDLINE | ID: mdl-30131192

ABSTRACT

Thousands of protein acyl modification sites have now been identified in vivo. However, at most sites the acylation stoichiometry is low, making functional enzyme-driven regulation in the majority of cases unlikely. As unmediated acylation can occur on the surface of proteins when acyl-CoA thioesters react with nucleophilic cysteine and lysine residues, slower nonenzymatic processes likely underlie most protein acylation. Here, we review how nonenzymatic acylation of nucleophilic lysine and cysteine residues occurs; the factors that enhance acylation at particular sites; and the strategies that have evolved to limit protein acylation. We conclude that protein acylation is an unavoidable consequence of the central role of reactive thioesters in metabolism. Finally, we propose a hypothesis for why low-stoichiometry protein acylation is selected against by evolution and how it might contribute to degenerative processes such as aging.


Subject(s)
Acyl Coenzyme A/metabolism , Cysteine/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Acyl Coenzyme A/chemistry , Acylation , Animals , Cysteine/chemistry , Humans , Lysine/chemistry , Proteins/chemistry
12.
Genet Med ; 20(10): 1224-1235, 2018 10.
Article in English | MEDLINE | ID: mdl-29517768

ABSTRACT

PURPOSE: To understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease. METHODS: We identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons. RESULTS: The patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis. CONCLUSION: Mitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.


Subject(s)
Adipates/metabolism , DNA, Mitochondrial/genetics , Dicarboxylic Acid Transporters/genetics , Mitochondrial Membrane Transport Proteins/genetics , Muscular Atrophy, Spinal/genetics , Adipates/pharmacology , Apoptosis/drug effects , Cell Line , DNA, Mitochondrial/metabolism , Dicarboxylic Acid Transporters/metabolism , Fibroblasts/drug effects , Homozygote , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Motor Neurons/drug effects , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/physiopathology , Mutation , Pipecolic Acids/metabolism , Quinolinic Acid/metabolism
13.
Biochim Biophys Acta Biomembr ; 1860(5): 1035-1045, 2018 May.
Article in English | MEDLINE | ID: mdl-29366674

ABSTRACT

Cardiolipin in eukaryotes is found in the mitochondrial inner membrane, where it interacts with membrane proteins and, although not essential, is necessary for the optimal activity of a number of proteins. One of them is the mitochondrial ADP/ATP carrier, which imports ADP into the mitochondrion and exports ATP. In the crystal structures, cardiolipin is bound to three equivalent sites of the ADP/ATP carrier, but its role is unresolved. Conservation of residues at these cardiolipin binding sites across other members of the mitochondrial carrier superfamily indicates cardiolipin binding is likely to be important for the function of all mitochondrial carriers. Multiscale simulations were performed in a cardiolipin-containing membrane to investigate the dynamics of cardiolipin around the yeast and bovine ADP/ATP carriers in a lipid bilayer and the properties of the cardiolipin-binding sites. In coarse-grain simulations, cardiolipin molecules bound to the carriers for longer periods of time than phosphatidylcholine and phosphatidylethanolamine lipids-with timescales in the tens of microseconds. Three long-lived cardiolipin binding sites overlapped with those in the crystal structures of the carriers. Other shorter-lived cardiolipin interaction sites were identified in both membrane leaflets. However, the timescales of the interactions were of the same order as phosphatidylcholine and phosphatidylethanolamine, suggesting that these sites are not specific for cardiolipin binding. The calculation of lipid binding times and the overlap of the cardiolipin binding sites between the structures and simulations demonstrate the potential of multiscale simulations to investigate the dynamics and behavior of lipids interacting with membrane proteins.


Subject(s)
Cardiolipins/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Protein Interaction Domains and Motifs , Amino Acid Sequence , Animals , Binding Sites/genetics , Cardiolipins/chemistry , Cardiolipins/genetics , Cattle , Conserved Sequence/genetics , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial Membranes/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins
14.
BMC Syst Biol ; 11(1): 114, 2017 Nov 25.
Article in English | MEDLINE | ID: mdl-29178872

ABSTRACT

BACKGROUND: The complexity of metabolic networks can make the origin and impact of changes in central metabolism occurring during diseases difficult to understand. Computer simulations can help unravel this complexity, and progress has advanced in genome-scale metabolic models. However, many models produce unrealistic results when challenged to simulate abnormal metabolism as they include incorrect specification and localisation of reactions and transport steps, incorrect reaction parameters, and confounding of prosthetic groups and free metabolites in reactions. Other common drawbacks are due to their scale, making them difficult to parameterise and simulation results hard to interpret. Therefore, it remains important to develop smaller, manually curated models. RESULTS: We present MitoCore, a manually curated constraint-based computer model of human metabolism that incorporates the complexity of central metabolism and simulates this metabolism successfully under normal and abnormal physiological conditions, including hypoxia and mitochondrial diseases. MitoCore describes 324 metabolic reactions, 83 transport steps between mitochondrion and cytosol, and 74 metabolite inputs and outputs through the plasma membrane, to produce a model of manageable scale for easy interpretation of results. Its key innovations include a more accurate partitioning of metabolism between cytosol and mitochondrial matrix; better modelling of connecting transport steps; differentiation of prosthetic groups and free co-factors in reactions; and a new representation of the respiratory chain and the proton motive force. MitoCore's default parameters simulate normal cardiomyocyte metabolism, and to improve usability and allow comparison with other models and types of analysis, its reactions and metabolites have extensive annotation, and cross-reference identifiers from Virtual Metabolic Human database and KEGG. These innovations-including over 100 reactions absent or modified from Recon 2-are necessary to model central metabolism more accurately. CONCLUSION: We anticipate MitoCore as a research tool for scientists, from experimentalists looking to interpret their data and test hypotheses, to experienced modellers predicting the consequences of disease or using computationally intensive methods that are infeasible with larger models, as well as a teaching tool for those new to modelling and needing a small, manageable model on which to learn and experiment.


Subject(s)
Computer Simulation , Metabolic Networks and Pathways , Metabolism , Models, Biological , Adenosine Triphosphate/metabolism , Databases, Factual , Electron Transport , Humans , Mitochondria , Myocytes, Cardiac/metabolism
15.
J Med Genet ; 54(12): 815-824, 2017 12.
Article in English | MEDLINE | ID: mdl-29079705

ABSTRACT

BACKGROUND: Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband. METHODS: A next-generation sequencing (NGS) approach was carried out on an Italian male who presented in childhood with ptosis, severe muscle weakness and exercise intolerance. His disease was slowly progressive, with partial recovery between episodes. Patient's specimens and yeast models were investigated. RESULTS: Histochemical and biochemical analyses on muscle biopsy showed multiple defects affecting mitochondrial respiratory chain complexes. We identified a single heterozygous mutation p.Gly96Val in ISCU, which was absent in DNA from his parents indicating a possible de novo dominant effect in the patient. Patient fibroblasts showed normal levels of ISCU protein and a few variably affected Fe-S cluster-dependent enzymes. Yeast studies confirmed both pathogenicity and dominance of the identified missense mutation. CONCLUSION: We describe the first heterozygous dominant mutation in ISCU which results in a phenotype reminiscent of the recessive disease previously reported.


Subject(s)
Genes, Dominant , Iron-Sulfur Proteins/genetics , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mutation , Amino Acid Sequence , Biomarkers , Biopsy , Computational Biology/methods , Electroencephalography , Electromyography , Fibroblasts/metabolism , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Iron-Sulfur Proteins/chemistry , Magnetic Resonance Imaging , Male , Models, Molecular , Muscle, Skeletal/pathology , Pedigree , Phenotype , Sequence Analysis, DNA , Structure-Activity Relationship , Young Adult
16.
Mitochondrion ; 31: 45-55, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27697518

ABSTRACT

Mitochondrial respiratory chain dysfunction causes a variety of life-threatening diseases affecting about 1 in 4300 adults. These diseases are genetically heterogeneous, but have the same outcome; reduced activity of mitochondrial respiratory chain complexes causing decreased ATP production and potentially toxic accumulation of metabolites. Severity and tissue specificity of these effects varies between patients by unknown mechanisms and treatment options are limited. So far most research has focused on the complexes themselves, and the impact on overall cellular metabolism is largely unclear. To illustrate how computer modelling can be used to better understand the potential impact of these disorders and inspire new research directions and treatments, we simulated them using a computer model of human cardiomyocyte mitochondrial metabolism containing over 300 characterised reactions and transport steps with experimental parameters taken from the literature. Overall, simulations were consistent with patient symptoms, supporting their biological and medical significance. These simulations predicted: complex I deficiencies could be compensated using multiple pathways; complex II deficiencies had less metabolic flexibility due to impacting both the TCA cycle and the respiratory chain; and complex III and IV deficiencies caused greatest decreases in ATP production with metabolic consequences that parallel hypoxia. Our study demonstrates how results from computer models can be compared to a clinical phenotype and used as a tool for hypothesis generation for subsequent experimental testing. These simulations can enhance understanding of dysfunctional mitochondrial metabolism and suggest new avenues for research into treatment of mitochondrial disease and other areas of mitochondrial dysfunction.


Subject(s)
Adenosine Triphosphate/metabolism , Cytochrome-c Oxidase Deficiency , Electron Transport Complex III/deficiency , Electron Transport Complex II/deficiency , Electron Transport Complex I/deficiency , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Computer Simulation , Humans
17.
J Med Genet ; 53(12): 846-849, 2016 12.
Article in English | MEDLINE | ID: mdl-27683825

ABSTRACT

BACKGROUND: Assembly of cytochrome c oxidase (COX, complex IV, cIV), the terminal component of the mitochondrial respiratory chain, is assisted by several factors, most of which are conserved from yeast to humans. However, some of them, including COA7, are found in humans but not in yeast. COA7 is a 231aa-long mitochondrial protein present in animals, containing five Sel1-like tetratricopeptide repeat sequences, which are likely to interact with partner proteins. METHODS: Whole exome sequencing was carried out on a 19 year old woman, affected by early onset, progressive severe ataxia and peripheral neuropathy, mild cognitive impairment and a cavitating leukodystrophy of the brain with spinal cord hypotrophy. Biochemical analysis of the mitochondrial respiratory chain revealed the presence of isolated deficiency of cytochrome c oxidase (COX) activity in skin fibroblasts and skeletal muscle. Mitochondrial localization studies were carried out in isolated mitochondria and mitoplasts from immortalized control human fibroblasts. RESULTS: We found compound heterozygous mutations in COA7: a paternal c.410A>G, p.Y137C, and a maternal c.287+1G>T variants. Lentiviral-mediated expression of recombinant wild-type COA7 cDNA in the patient fibroblasts led to the recovery of the defect in COX activity and restoration of normal COX amount. In mitochondrial localization experiments, COA7 behaved as the soluble matrix protein Citrate Synthase. CONCLUSIONS: We report here the first patient carrying pathogenic mutations of COA7, causative of isolated COX deficiency and progressive neurological impairment. We also show that COA7 is a soluble protein localized to the matrix, rather than in the intermembrane space as previously suggested.


Subject(s)
Cytochrome-c Oxidase Deficiency/metabolism , Leukoencephalopathies/metabolism , Mitochondrial Proteins/genetics , Mutation , Amino Acid Sequence , Cytochrome-c Oxidase Deficiency/genetics , DNA Mutational Analysis , Female , Humans , Leukoencephalopathies/genetics , Mitochondria , Mitochondrial Proteins/chemistry , Sequence Alignment , Young Adult
18.
Nucleic Acids Res ; 44(16): 7804-16, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27466392

ABSTRACT

Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.


Subject(s)
DNA, Mitochondrial/genetics , Endonucleases/metabolism , Mitochondria/metabolism , Mutation/genetics , Zinc Fingers , Cell Line, Tumor , Flow Cytometry , Gene Dosage , Humans , RNA, Catalytic/metabolism
19.
Proc Natl Acad Sci U S A ; 113(31): 8687-92, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27382158

ABSTRACT

The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme.


Subject(s)
Cardiolipins/metabolism , Lysine/metabolism , Molecular Dynamics Simulation , Proton-Translocating ATPases/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites/genetics , Cardiolipins/chemistry , Cattle , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lysine/chemistry , Lysine/genetics , Methylation , Protein Binding , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...