Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Behav Brain Sci ; 47: e24, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224053

ABSTRACT

Peace is a hallmark of human societies. However, certain ant species engage in long-term intergroup resource sharing, which is remarkably similar to peace among human groups. We discuss how individual and group payoff distributions are affected by kinship, dispersal, and age structure; the challenges of diagnosing peace; and the benefits of comparing convergent complex behaviours in disparate taxa.


Subject(s)
Social Conditions , Humans
2.
Proc Biol Sci ; 290(2007): 20231290, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37752835

ABSTRACT

Understanding how resource limitation and biotic interactions interact across spatial scales is fundamental to explaining the structure of ecological communities. However, empirical studies addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a highly tractable arboreal ant study system to explore the interactive effects of resource availability and competition on community structure across three local scales: an individual tree, the nest network created by each colony and the individual ant nest. On individual trees, the ant assemblages are primarily shaped by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained by the availability of nesting resources but also influenced by the co-occurring species. Within individual nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local ecological organization, transitioning to a stronger effect of species interactions at finer scales. Collectively, these results highlight that the process exerting the strongest influence on community structure is highly dependent on the scale at which we examine the community, with shifts occurring even across fine-grained local scales.


Subject(s)
Ants , Animals , Trees , Wood , Ecosystem
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220074, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36802776

ABSTRACT

Sociality is widespread among animals, and involves complex relationships within and between social groups. While intragroup interactions are often cooperative, intergroup interactions typically involve conflict, or at best tolerance. Active cooperation between members of distinct, separate groups occurs very rarely, predominantly in some primate and ant species. Here, we ask why intergroup cooperation is so rare, and what conditions favour its evolution. We present a model incorporating intra- and intergroup relationships and local and long-distance dispersal. We show that dispersal modes play a pivotal role in the evolution of intergroup interactions. Both long-distance and local dispersal processes drive population social structure, and the costs and benefits of intergroup conflict, tolerance and cooperation. Overall, the evolution of multi-group interaction patterns, including both intergroup aggression and intergroup tolerance, or even altruism, is more likely with mostly localized dispersal. However, the evolution of these intergroup relationships may have significant ecological impacts, and this feedback may alter the ecological conditions that favour its own evolution. These results show that the evolution of intergroup cooperation is favoured by a specific set of conditions, and may not be evolutionarily stable. We discuss how our results relate to empirical evidence of intergroup cooperation in ants and primates. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Subject(s)
Biological Evolution , Social Behavior , Animals , Aggression , Altruism , Primates , Cooperative Behavior
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1851): 20210466, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35369743

ABSTRACT

The conflict between social groups is widespread, often imposing significant costs across multiple groups. The social insects make an ideal system for investigating inter-group relationships, because their interaction types span the full harming-helping continuum, from aggressive conflict, to mutual tolerance, to cooperation between spatially separate groups. Here we review inter-group conflict in the social insects and the various means by which they reduce the costs of conflict, including individual or colony-level avoidance, ritualistic behaviours and even group fusion. At the opposite extreme of the harming-helping continuum, social insect groups may peacefully exchange resources and thus cooperate between groups in a manner rare outside human societies. We discuss the role of population viscosity in favouring inter-group cooperation. We present a model encompassing intra- and inter-group interactions, and local and long-distance dispersal. We show that in this multi-level population structure, the increased likelihood of cooperative partners being kin is balanced by increased kin competition, such that neither cooperation (helping) nor conflict (harming) is favoured. This model provides a baseline context in which other intra- and inter-group processes act, tipping the balance toward or away from conflict. We discuss future directions for research into the ecological factors shaping the evolution of inter-group interactions. This article is part of the theme issue 'Intergroup conflict across taxa'.


Subject(s)
Group Processes , Insecta , Aggression , Animals , Humans , Problem Solving
5.
Proc Biol Sci ; 288(1949): 20210430, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33878925

ABSTRACT

Biological systems are typically dependent on transportation networks for the efficient distribution of resources and information. Revealing the decentralized mechanisms underlying the generative process of these networks is key in our global understanding of their functions and is of interest to design, manage and improve human transport systems. Ants are a particularly interesting taxon to address these issues because some species build multi-sink multi-source transport networks analogous to human ones. Here, by combining empirical field data and modelling at several scales of description, we show that pre-existing mechanisms of recruitment with positive feedback involved in foraging can account for the structure of complex ant transport networks. Specifically, we find that emergent group-level properties of these empirical networks, such as robustness, efficiency and cost, can arise from models built on simple individual-level behaviour addressing a quality-distance trade-off by the means of pheromone trails. Our work represents a first step in developing a theory for the generation of effective multi-source multi-sink transport networks based on combining exploration and positive reinforcement of best sources.


Subject(s)
Models, Biological , Pheromones , Feeding Behavior , Humans
6.
J Anim Ecol ; 90(1): 143-152, 2021 01.
Article in English | MEDLINE | ID: mdl-32141609

ABSTRACT

Animal social structure is shaped by environmental conditions, such as food availability. This is important as conditions are likely to change in the future and changes to social structure can have cascading ecological effects. Wood ants are a useful taxon for the study of the relationship between social structure and environmental conditions, as some populations form large nest networks and they are ecologically dominant in many northern hemisphere woodlands. Nest networks are formed when a colony inhabits more than one nest, known as polydomy. Polydomous colonies are composed of distinct sub-colonies that inhabit spatially distinct nests and that share resources with each other. In this study, we performed a controlled experiment on 10 polydomous wood ant (Formica lugubris) colonies to test how changing the resource environment affects the social structure of a polydomous colony. We took network maps of all colonies for 5 years before the experiment to assess how the networks changes under natural conditions. After this period, we prevented ants from accessing an important food source for a year in five colonies and left the other five colonies undisturbed. We found that preventing access to an important food source causes polydomous wood ant colony networks to fragment into smaller components and begin foraging on previously unused food sources. These changes were not associated with a reduction in the growth of populations inhabiting individual nests (sub-colonies), foundation of new nests or survival, when compared with control colonies. Colony splitting likely occurred as the availability of food in each nest changed causing sub-colonies to change their inter-nest connections. Consequently, our results demonstrate that polydomous colonies can adjust to environmental changes by altering their social network.


Subject(s)
Adaptation, Physiological , Forests , Algorithms , Animals
7.
Proc Natl Acad Sci U S A ; 117(27): 15724-15730, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571952

ABSTRACT

Inbreeding is often avoided in natural populations by passive processes such as sex-biased dispersal. But, in many social animals, opposite-sexed adult relatives are spatially clustered, generating a risk of incest and hence selection for active inbreeding avoidance. Here we show that, in long-tailed tits (Aegithalos caudatus), a cooperative breeder that risks inbreeding by living alongside opposite-sex relatives, inbreeding carries fitness costs and is avoided by active kin discrimination during mate choice. First, we identified a positive association between heterozygosity and fitness, indicating that inbreeding is costly. We then compared relatedness within breeding pairs to that expected under multiple mate-choice models, finding that pair relatedness is consistent with avoidance of first-order kin as partners. Finally, we show that the similarity of vocal cues offers a plausible mechanism for discrimination against first-order kin during mate choice. Long-tailed tits are known to discriminate between the calls of close kin and nonkin, and they favor first-order kin in cooperative contexts, so we conclude that long-tailed tits use the same kin discrimination rule to avoid inbreeding as they do to direct help toward kin.


Subject(s)
Breeding/methods , Passeriformes/growth & development , Reproduction/genetics , Songbirds/growth & development , Animals , Female , Heterozygote , Inbreeding , Male , Passeriformes/genetics , Sexual Behavior, Animal/physiology , Songbirds/genetics
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1802): 20190565, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32420850

ABSTRACT

Most cooperative breeders live in discrete family groups, but in a minority, breeding populations comprise extended social networks of conspecifics that vary in relatedness. Selection for effective kin recognition may be expected for more related individuals in such kin neighbourhoods to maximize indirect fitness. Using a long-term social pedigree, molecular genetics, field observations and acoustic analyses, we examine how vocal similarity affects helping decisions in the long-tailed tit Aegithalos caudatus. Long-tailed tits are cooperative breeders in which help is typically redirected by males that have failed in their own breeding attempts towards the offspring of male relatives living within kin neighbourhoods. We identify a positive correlation between call similarity and kinship, suggesting that vocal cues offer a plausible mechanism for kin discrimination. Furthermore, we show that failed breeders choose to help males with calls more similar to their own. However, although helpers fine-tune their provisioning rates according to how closely related they are to recipients, their effort was not correlated with their vocal similarity to helped breeders. We conclude that although vocalizations are an important part of the recognition system of long-tailed tits, discrimination is likely to be based on prior association and may involve a combination of vocal and non-vocal cues. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.


Subject(s)
Animal Communication , Auditory Perception , Cooperative Behavior , Cues , Nesting Behavior , Songbirds/physiology , Animals , Decision Making , Helping Behavior , Male
9.
Behav Ecol ; 30(6): 1700-1706, 2019.
Article in English | MEDLINE | ID: mdl-31723318

ABSTRACT

A challenge faced by individuals and groups of many species is determining how resources and activities should be spatially distributed: centralized or decentralized. This distribution problem is hard to understand due to the many costs and benefits of each strategy in different settings. Ant colonies are faced by this problem and demonstrate two solutions: 1) centralizing resources in a single nest (monodomy) and 2) decentralizing by spreading resources across many nests (polydomy). Despite the possibilities for using this system to study the centralization/decentralization problem, the trade-offs associated with using either polydomy or monodomy are poorly understood due to a lack of empirical data and cohesive theory. Here, we present a dynamic network model of a population of ant nests which is based on observations of a facultatively polydomous ant species (Formica lugubris). We use the model to test several key hypotheses for costs and benefits of polydomy and monodomy and show that decentralization is advantageous when resource acquisition costs are high, nest size is limited, resources are clustered, and there is a risk of nest destruction, but centralization prevails when resource availability fluctuates and nest size is limited. Our model explains the phylogenetic and ecological diversity of polydomous ants, demonstrates several trade-offs of decentralization and centralization, and provides testable predictions for empirical work on ants and in other systems.

10.
Proc Biol Sci ; 285(1887)2018 09 19.
Article in English | MEDLINE | ID: mdl-30232162

ABSTRACT

Animal social groups are complex systems that are likely to exhibit tipping points-which are defined as drastic shifts in the dynamics of systems that arise from small changes in environmental conditions-yet this concept has not been carefully applied to these systems. Here, we summarize the concepts behind tipping points and describe instances in which they are likely to occur in animal societies. We also offer ways in which the study of social tipping points can open up new lines of inquiry in behavioural ecology and generate novel questions, methods, and approaches in animal behaviour and other fields, including community and ecosystem ecology. While some behaviours of living systems are hard to predict, we argue that probing tipping points across animal societies and across tiers of biological organization-populations, communities, ecosystems-may help to reveal principles that transcend traditional disciplinary boundaries.


Subject(s)
Behavior, Animal , Social Behavior , Animals , Ecosystem
11.
Mol Ecol ; 27(7): 1714-1726, 2018 04.
Article in English | MEDLINE | ID: mdl-29543401

ABSTRACT

In animal societies, characteristic demographic and dispersal patterns may lead to genetic structuring of populations, generating the potential for kin selection to operate. However, even in genetically structured populations, social interactions may still require kin discrimination for cooperative behaviour to be directed towards relatives. Here, we use molecular genetics and long-term field data to investigate genetic structure in an adult population of long-tailed tits Aegithalos caudatus, a cooperative breeder in which helping occurs within extended kin networks, and relate this to patterns of helping with respect to kinship. Spatial autocorrelation analyses reveal fine-scale genetic structure within our population, such that related adults of either sex are spatially clustered following natal dispersal, with relatedness among nearby males higher than that among nearby females, as predicted by observations of male-biased philopatry. This kin structure creates opportunities for failed breeders to gain indirect fitness benefits via redirected helping, but crucially, most close neighbours of failed breeders are unrelated and help is directed towards relatives more often than expected by indiscriminate helping. These findings are consistent with the effective kin discrimination mechanism known to exist in long-tailed tits and support models identifying kin selection as the driver of cooperation.


Subject(s)
Breeding , Passeriformes/genetics , Animals , Female , Male , Nesting Behavior , Phylogeny
12.
Biol Lett ; 13(3)2017 03.
Article in English | MEDLINE | ID: mdl-28250206

ABSTRACT

Social interactions are often characterized by cooperation within groups and conflict or competition between groups. In certain circumstances, however, cooperation can arise between social groups. Here, we examine the circumstances under which inter-group cooperation is expected to emerge and present examples with particular focus on groups in two well-studied but dissimilar taxa: humans and ants. Drivers for the evolution of inter-group cooperation include overarching threats from predators, competitors or adverse conditions, and group-level resource asymmetries. Resources can differ between groups in both quantity and type. Where the difference is in type, inequalities can lead to specialization and division of labour between groups, a phenomenon characteristic of human societies, but rarely seen in other animals. The ability to identify members of one's own group is essential for social coherence; we consider the proximate roles of identity effects in shaping inter-group cooperation and allowing membership of multiple groups. Finally, we identify numerous valuable avenues for future research that will improve our understanding of the processes shaping inter-group cooperation.


Subject(s)
Cooperative Behavior , Interpersonal Relations , Animals , Ants/physiology , Behavior, Animal , Biological Evolution , Competitive Behavior , Humans , Social Behavior
13.
Ecol Evol ; 7(4): 1170-1180, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28303187

ABSTRACT

Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant (Formica lugubris) colonies are affected by being part of a multi-nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.

14.
Ecol Evol ; 6(24): 8846-8856, 2016 12.
Article in English | MEDLINE | ID: mdl-28035273

ABSTRACT

Eusociality is one of the most complex forms of social organization, characterized by cooperative and reproductive units termed colonies. Altruistic behavior of workers within colonies is explained by inclusive fitness, with indirect fitness benefits accrued by helping kin. Members of a social insect colony are expected to be more closely related to one another than they are to other conspecifics. In many social insects, the colony can extend to multiple socially connected but spatially separate nests (polydomy). Social connections, such as trails between nests, promote cooperation and resource exchange, and we predict that workers from socially connected nests will have higher internest relatedness than those from socially unconnected, and noncooperating, nests. We measure social connections, resource exchange, and internest genetic relatedness in the polydomous wood ant Formica lugubris to test whether (1) socially connected but spatially separate nests cooperate, and (2) high internest relatedness is the underlying driver of this cooperation. Our results show that socially connected nests exhibit movement of workers and resources, which suggests they do cooperate, whereas unconnected nests do not. However, we find no difference in internest genetic relatedness between socially connected and unconnected nest pairs, both show high kinship. Our results suggest that neighboring pairs of connected nests show a social and cooperative distinction, but no genetic distinction. We hypothesize that the loss of a social connection may initiate ecological divergence within colonies. Genetic divergence between neighboring nests may build up only later, as a consequence rather than a cause of colony separation.

15.
Behav Ecol ; 27(2): 660-668, 2016.
Article in English | MEDLINE | ID: mdl-27004016

ABSTRACT

Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore fundamental to the success of social insects. Resource sharing is complicated if a colony inhabits several spatially separated nests, a nesting strategy common in many ant species. Resources must be shared not only between individuals in a single nest but also between nests. We investigated the behaviors facilitating resource redistribution between nests in a dispersed-nesting population of wood ant Formica lugubris. We marked ants, in the field, as they transported resources along the trails between nests of a colony, to investigate how the behavior of individual workers relates to colony-level resource exchange. We found that workers from a particular nest "forage" to other nests in the colony, treating them as food sources. Workers treating other nests as food sources means that simple, pre-existing foraging behaviors are used to move resources through a distributed system. It may be that this simple behavioral mechanism facilitates the evolution of this complex life-history strategy.

16.
PLoS One ; 10(10): e0138321, 2015.
Article in English | MEDLINE | ID: mdl-26465750

ABSTRACT

A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.


Subject(s)
Ants/physiology , Appetitive Behavior/physiology , Feeding Behavior/physiology , Nesting Behavior/physiology , Animals , Aphids , Food , Linear Models , Models, Biological , Seasons , Social Behavior , Temperature , Wood
17.
Behav Ecol ; 25(5): 1183-1191, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25214755

ABSTRACT

An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system.

18.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24920474

ABSTRACT

Collective decisions in animal groups emerge from the actions of individuals who are unlikely to have global information. Comparative assessment of options can be valuable in decision-making. Ant colonies are excellent collective decision-makers, for example when selecting a new nest-site. Here, we test the dependency of this cooperative process on comparisons conducted by individual ants. We presented ant colonies with a choice between new nests: one good and one poor. Using individually radio-tagged ants and an automated system of doors, we manipulated individual-level access to information: ants visiting the good nest were barred from visiting the poor one and vice versa. Thus, no ant could individually compare the available options. Despite this, colonies still emigrated quickly and accurately when comparisons were prevented. Individual-level rules facilitated this behavioural robustness: ants allowed to experience only the poor nest subsequently searched more. Intriguingly, some ants appeared particularly discriminating across emigrations under both treatments, suggesting they had stable, high nest acceptance thresholds. Overall, our results show how a colony of ants, as a cognitive entity, can compare two options that are not both accessible by any individual ant. Our findings illustrate a collective decision process that is robust to differences in individual access to information.


Subject(s)
Ants/physiology , Nesting Behavior , Animal Communication , Animals , Choice Behavior , Decision Making
19.
PLoS One ; 9(12): e116113, 2014.
Article in English | MEDLINE | ID: mdl-25551636

ABSTRACT

Climate change may affect ecosystems and biodiversity through the impacts of rising temperature on species' body size. In terms of physiology and genetics, the colony is the unit of selection for ants so colony size can be considered the body size of a colony. For polydomous ant species, a colony is spread across several nests. This study aims to clarify how climate change may influence an ecologically significant ant species group by investigating thermal effects on wood ant colony size. The strong link between canopy cover and the local temperatures of wood ant's nesting location provides a feasible approach for our study. Our results showed that nests were larger in shadier areas where the thermal environment was colder and more stable compared to open areas. Colonies (sum of nests in a polydomous colony) also tended to be larger in shadier areas than in open areas. In addition to temperature, our results supported that food resource availability may be an additional factor mediating the relationship between canopy cover and nest size. The effects of canopy cover on total colony size may act at the nest level because of the positive relationship between total colony size and mean nest size, rather than at the colony level due to lack of link between canopy cover and number of nests per colony. Causal relationships between the environment and the life-history characteristics may suggest possible future impacts of climate change on these species.


Subject(s)
Ants/physiology , Ecosystem , Trees , Animals , Climate Change , Population Density , Temperature , United Kingdom , Wood
20.
Am Nat ; 182(1): 120-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23778231

ABSTRACT

Spiders of the tropical American colonial orb weaver Parawixia bistriata form a communal bivouac in daytime. At sunset, they leave the bivouac and construct individual, defended webs within a large, communally built scaffolding of permanent, thick silk lines between trees and bushes. Once spiders started building a web, they repelled other spiders walking on nearby scaffolding with a "bounce" behavior. In nearly all cases (93%), this resulted in the intruder leaving without a fight, akin to the "bourgeois strategy," in which residents win and intruders retreat without escalated contests. However, a few spiders (6.5%) did not build a web due to lack of available space. Webless spiders were less likely to leave when bounced (only 42% left) and instead attempted to "freeload," awaiting the capture of prey items in nearby webs. Our simple model shows that webless spiders should change their strategy from bourgeois to freeloading satellite as potential web sites become increasingly occupied.


Subject(s)
Ecosystem , Spiders/physiology , Agonistic Behavior , Animals , Brazil , Feeding Behavior , Female , Male , Models, Biological , Territoriality
SELECTION OF CITATIONS
SEARCH DETAIL