Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lancet Reg Health Eur ; 17: 100361, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35345560

ABSTRACT

Background: Over 10-years of whole-genome sequencing (WGS) of Mycobacterium tuberculosis in Birmingham presents an opportunity to explore epidemiological trends and risk factors for transmission in new detail. Methods: Between 1st January 2009 and 15th June 2019, we obtained the first WGS isolate from every patient resident in a postcode district covered by Birmingham's centralised tuberculosis service. Data on patients' sex, country of birth, social risk-factors, anatomical locus of disease, and strain lineage were collected. Poisson harmonic regression was used to assess seasonal variation in case load and a mixed-effects multivariable Cox proportionate hazards model was used to assess risk factors for a future case arising in clusters defined by a 5 single nucleotide polymorphism (SNP) threshold, and by 12 SNPs in a sensitivity analysis. Findings: 511/1653 (31%) patients were genomically clustered with another. A seasonal variation in diagnoses was observed, peaking in spring, but only among clustered cases. Risk-factors for a future clustered case included UK-birth (aHR=2·03 (95%CI 1·35-3·04), p < 0·001), infectious (pulmonary/laryngeal/miliary) tuberculosis (aHR=3·08 (95%CI 1·98-4·78), p < 0·001), and M. tuberculosis lineage 3 (aHR=1·91 (95%CI 1·03-3·56), p = 0·041) and 4 (aHR=2·27 (95%CI 1·21-4·26), p = 0·011), vs. lineage 1. Similar results pertained to 12 SNP clusters, for which social risk-factors were also significant (aHR 1·72 (95%CI 1·02-2·93), p = 0·044). There was marked heterogeneity in transmission patterns between postcode districts. Interpretation: There is seasonal variation in the diagnosis of genomically clustered, but not non-clustered, cases. Risk factors for clustering include UK-birth, infectious forms of tuberculosis, and infection with lineage 3 or 4. Funding: Wellcome Trust, MRC, UKHSA.

3.
Pediatr Infect Dis J ; 37(12): e306-e314, 2018 12.
Article in English | MEDLINE | ID: mdl-29601454

ABSTRACT

BACKGROUND: The natural history of neonatal group B Streptococcus (GBS) is poorly understood. Little is known about the bacterial factors influencing the transmission of GBS from mother to neonate, or the development of invasive early-onset GBS disease (EOGBS) in colonized neonates. We reviewed whether bacterial load and molecular markers are associated with GBS vertical transmission and progression to EOGBS. METHODS: We searched Medline, Embase, Cochrane and Web of Science from inception to October 10, 2016, for observational studies in English. We also hand-searched reference lists of relevant publications and experts cross-checked included studies. Two reviewers independently screened studies, extracted data and appraised the quality of included studies using the Quality in Prognosis Studies tool. We conducted random-effects meta-analyses where possible and narratively synthesized the evidence in text and tables. RESULTS: Seventeen studies were included from 1107 records retrieved from electronic databases and publication references. Meta-analyses of 3 studies showed that neonates colonized by serotype III had a higher risk of developing EOGBS than serotype Ia (pooled risk ratio: 1.51, 95% confidence interval: 1.12-2.03) and serotype II (risk ratio: 1.95, 95% confidence interval: 1.10-3.45). Eleven studies showed that in heavily colonized mothers, 2-3 times more neonates were colonized, and in heavily colonized neonates, up to 15 times more neonates had EOGBS, compared with light colonization. Most evidence was published before 2000 and was at risk of bias. CONCLUSIONS: Acknowledging the difficulty of natural history studies, well-controlled studies are needed to assess the predictive value of pathogen subtype and heavy load; they may be useful for better-targeted prevention.


Subject(s)
Bacterial Load/statistics & numerical data , Biomarkers/metabolism , Infectious Disease Transmission, Vertical/statistics & numerical data , Streptococcal Infections/microbiology , Streptococcus agalactiae , Female , Humans , Infant, Newborn , Pregnancy , Serogroup
4.
BMC Pregnancy Childbirth ; 17(1): 247, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28747160

ABSTRACT

BACKGROUND: Adverse events from intrapartum antibiotic prophylaxis (IAP) are poorly documented yet essential to inform clinical practice for neonatal group B Streptococcus (GBS) disease prevention. In this systematic review, we appraised and synthesised the evidence on the adverse events of IAP in the mother and/or her child. METHODS: We searched MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane, and Science Citation Index from date of inception until October 16th 2016. Reference lists of included studies and relevant systematic reviews were hand-searched. We included primary studies in English that reported any adverse events from intrapartum antibiotics for any prophylactic purpose compared to controls. The search was not restricted to prophylaxis for GBS but excluded women with symptoms of infection or undergoing caesarean section. Two reviewers assessed the methodological quality of studies, using the Cochrane Risk of Bias tool, and the Risk of Bias Assessment Tool for Nonrandomised Studies. Results were synthesised narratively and displayed in text and tables. RESULTS: From 2364 unique records, 30 studies were included. Despite a wide range of adverse events reported in 17 observational studies and 13 randomised controlled trials (RCTs), the evidence was inconsistent and at high risk of bias. Only one RCT investigated the long-term effects of IAP reporting potentially serious outcomes such as cerebral palsy; however, it had limited applicability and unclear biological plausibility. Seven observational studies showed that IAP for maternal GBS colonisation alters the infant microbiome. However, study populations were not followed through to clinical outcomes, therefore clinical significance is unknown. There was also observational evidence for increased antimicrobial resistance, however studies were at high or unclear risk of bias. CONCLUSIONS: The evidence base to determine the frequency of adverse events from intrapartum antibiotic prophylaxis for neonatal GBS disease prevention is limited. As RCTs may not be possible, large, better quality, and longitudinal observational studies across countries with widespread IAP could fill this gap. TRIAL REGISTRATION: CRD42016037195 .


Subject(s)
Anti-Bacterial Agents/adverse effects , Antibiotic Prophylaxis/adverse effects , Gastrointestinal Microbiome/drug effects , Therapeutic Irrigation/adverse effects , Cerebral Palsy/chemically induced , Female , Humans , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy , Streptococcal Infections/prevention & control
5.
Genome Med ; 5(4): 36, 2013.
Article in English | MEDLINE | ID: mdl-23673226

ABSTRACT

Outbreaks of infection can be devastating for individuals and societies. In this review, we examine the applications of new high-throughput sequencing approaches to the identification and characterization of outbreaks, focusing on the application of whole-genome sequencing (WGS) to outbreaks of bacterial infection. We describe traditional epidemiological analysis and show how WGS can be informative at multiple steps in outbreak investigation, as evidenced by many recent studies. We conclude that high-throughput sequencing approaches can make a significant contribution to the investigation of outbreaks of bacterial infection and that the integration of WGS with epidemiological investigation, diagnostic assays and antimicrobial susceptibility testing will precipitate radical changes in clinical microbiology and infectious disease epidemiology in the near future. However, several challenges remain before WGS can be routinely used in outbreak investigation and clinical practice.

6.
Nat Rev Microbiol ; 10(9): 599-606, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22864262

ABSTRACT

Here, we take a snapshot of the high-throughput sequencing platforms, together with the relevant analytical tools, that are available to microbiologists in 2012, and evaluate the strengths and weaknesses of these platforms in obtaining bacterial genome sequences. We also scan the horizon of future possibilities, speculating on how the availability of sequencing that is 'too cheap to metre' might change the face of microbiology forever.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , High-Throughput Screening Assays , Genetics, Microbial/trends , Molecular Biology/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...