Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Euro Surveill ; 28(27)2023 07.
Article in English | MEDLINE | ID: mdl-37410383

ABSTRACT

BackgroundSince May 2022, an mpox outbreak affecting primarily men who have sex with men (MSM) has occurred in numerous non-endemic countries worldwide. As MSM frequently reported multiple sexual encounters in this outbreak, reliably determining the time of infection is difficult; consequently, estimation of the incubation period is challenging.AimWe aimed to provide valid and precise estimates of the incubation period distribution of mpox by using cases associated with early outbreak settings where infection likely occurred.MethodsColleagues in European countries were invited to provide information on exposure intervals and date of symptom onset for mpox cases who attended a fetish festival in Antwerp, Belgium, a gay pride festival in Gran Canaria, Spain or a particular club in Berlin, Germany, where early mpox outbreaks occurred. Cases of these outbreaks were pooled; doubly censored models using the log-normal, Weibull and Gamma distributions were fitted to estimate the incubation period distribution.ResultsWe included data on 122 laboratory-confirmed cases from 10 European countries. Depending on the distribution used, the median incubation period ranged between 8 and 9 days, with 5th and 95th percentiles ranging from 2 to 3 and from 20 to 23 days, respectively. The shortest interval that included 50% of incubation periods spanned 8 days (4-11 days).ConclusionCurrent public health management of close contacts should consider that in approximately 5% of cases, the incubation period exceeds the commonly used monitoring period of 21 days.


Subject(s)
Homosexuality, Male , Mpox (monkeypox) , Humans , Male , Berlin/epidemiology , Disease Outbreaks , Holidays , Infectious Disease Incubation Period , Mpox (monkeypox)/epidemiology , Sexual and Gender Minorities
2.
Emerg Infect Dis ; 29(4): 751-760, 2023 04.
Article in English | MEDLINE | ID: mdl-36957994

ABSTRACT

During April-July 2022, outbreaks of severe acute hepatitis of unknown etiology (SAHUE) were reported in 35 countries. Five percent of cases required liver transplantation, and 22 patients died. Viral metagenomic studies of clinical samples from SAHUE cases showed a correlation with human adenovirus F type 41 (HAdV-F41) and adeno-associated virus type 2 (AAV2). To explore the association between those DNA viruses and SAHUE in children in Ireland, we quantified HAdV-F41 and AAV2 in samples collected from a wastewater treatment plant serving 40% of Ireland's population. We noted a high correlation between HAdV-F41 and AAV2 circulation in the community and SAHUE clinical cases. Next-generation sequencing of the adenovirus hexon in wastewater demonstrated HAdV-F41 was the predominant HAdV type circulating. Our environmental analysis showed increased HAdV-F41 and AAV2 prevalence in the community during the SAHUE outbreak. Our findings highlight how wastewater sampling could aid in surveillance for respiratory adenovirus species.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Hepatitis , Respiratory Tract Infections , Humans , Child , Wastewater , Ireland/epidemiology , Adenoviruses, Human/genetics , Hepatitis/epidemiology , Disease Outbreaks , Acute Disease , Adenovirus Infections, Human/epidemiology , Phylogeny , Respiratory Tract Infections/epidemiology
3.
Sci Total Environ ; 838(Pt 2): 155828, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35588817

ABSTRACT

SARS-CoV-2 RNA quantification in wastewater is an important tool for monitoring the prevalence of COVID-19 disease on a community scale which complements case-based surveillance systems. As novel variants of concern (VOCs) emerge there is also a need to identify the primary circulating variants in a community, accomplished to date by sequencing clinical samples. Quantifying variants in wastewater offers a cost-effective means to augment these sequencing efforts. In this study, SARS-CoV-2 N1 RNA concentrations and daily loadings were determined and compared to case-based data collected as part of a national surveillance programme to determine the validity of wastewater surveillance to monitor infection spread in the greater Dublin area. Further, sequencing of clinical samples was conducted to determine the primary SARS-CoV-2 lineages circulating in Dublin. Finally, digital PCR was employed to determine whether SARS-CoV-2 VOCs, Alpha and Delta, were quantifiable from wastewater. No lead or lag time was observed between SARS-CoV-2 wastewater and case-based data and SARS-CoV-2 trends in Dublin wastewater significantly correlated with the notification of confirmed cases through case-based surveillance preceding collection with a 5-day average. This demonstrates that viral RNA in Dublin's wastewater mirrors the spread of infection in the community. Clinical sequence data demonstrated that increased COVID-19 cases during Ireland's third wave coincided with the introduction of the Alpha variant, while the fourth wave coincided with increased prevalence of the Delta variant. Interestingly, the Alpha variant was detected in Dublin wastewater prior to the first genome being sequenced from clinical samples, while the Delta variant was identified at the same time in clinical and wastewater samples. This work demonstrates the validity of wastewater surveillance for monitoring SARS-CoV-2 infections and also highlights its effectiveness in identifying circulating variants which may prove useful when sequencing capacity is limited.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Ireland/epidemiology , RNA, Viral , SARS-CoV-2/genetics , Wastewater/analysis , Wastewater-Based Epidemiological Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...