Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 43(8): 776-84, 2011 Jul 03.
Article in English | MEDLINE | ID: mdl-21725307

ABSTRACT

Mutations affecting ciliary components cause ciliopathies. As described here, we investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel and Joubert syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2 and Cc2d2a. Components of this complex co-localize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes Joubert syndrome. Thus, a transition zone complex of Meckel and Joubert syndrome proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.


Subject(s)
Cell Membrane/physiology , Cilia/metabolism , Cilia/pathology , Membrane Proteins/physiology , Mutation/genetics , Abnormalities, Multiple , Animals , Cerebellar Diseases/genetics , Cerebellum/abnormalities , Chickens , Ciliary Motility Disorders/genetics , Encephalocele/genetics , Eye Abnormalities/genetics , Humans , Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis , Organ Specificity , Peptide Fragments/immunology , Polycystic Kidney Diseases/genetics , Rabbits , Retina/abnormalities , Retinitis Pigmentosa , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Am J Hum Genet ; 89(1): 94-110, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21763481

ABSTRACT

Nearly every ciliated organism possesses three B9 domain-containing proteins: MKS1, B9D1, and B9D2. Mutations in human MKS1 cause Meckel syndrome (MKS), a severe ciliopathy characterized by occipital encephalocele, liver ductal plate malformations, polydactyly, and kidney cysts. Mouse mutations in either Mks1 or B9d2 compromise ciliogenesis and result in phenotypes similar to those of MKS. Given the importance of these two B9 proteins to ciliogenesis, we examined the role of the third B9 protein, B9d1. Mice lacking B9d1 displayed polydactyly, kidney cysts, ductal plate malformations, and abnormal patterning of the neural tube, concomitant with compromised ciliogenesis, ciliary protein localization, and Hedgehog (Hh) signal transduction. These data prompted us to screen MKS patients for mutations in B9D1 and B9D2. We identified a homozygous c.301A>C (p.Ser101Arg) B9D2 mutation that segregates with MKS, affects an evolutionarily conserved residue, and is absent from controls. Unlike wild-type B9D2 mRNA, the p.Ser101Arg mutation failed to rescue zebrafish phenotypes induced by the suppression of b9d2. With coimmunoprecipitation and mass spectrometric analyses, we found that Mks1, B9d1, and B9d2 interact physically, but that the p.Ser101Arg mutation abrogates the ability of B9d2 to interact with Mks1, further suggesting that the mutation compromises B9d2 function. Our data indicate that B9d1 is required for normal Hh signaling, ciliogenesis, and ciliary protein localization and that B9d1 and B9d2 are essential components of a B9 protein complex, disruption of which causes MKS.


Subject(s)
Ciliary Motility Disorders/genetics , Encephalocele/genetics , Polycystic Kidney Diseases/genetics , Proteins/genetics , Amino Acid Sequence , Animals , DNA Mutational Analysis , Genetic Linkage , Homozygote , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutation , NIH 3T3 Cells , Neural Tube/abnormalities , Phenotype , Polydactyly/genetics , Protein Transport/genetics , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinitis Pigmentosa , Signal Transduction , Zebrafish/genetics
3.
Nature ; 473(7345): 92-6, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21471969

ABSTRACT

Regulatory mechanisms governing the sequence from progenitor cell proliferation to neuronal migration during corticogenesis are poorly understood. Here we report that phosphorylation of DISC1, a major susceptibility factor for several mental disorders, acts as a molecular switch from maintaining proliferation of mitotic progenitor cells to activating migration of postmitotic neurons in mice. Unphosphorylated DISC1 regulates canonical Wnt signalling via an interaction with GSK3ß, whereas specific phosphorylation at serine 710 (S710) triggers the recruitment of Bardet-Biedl syndrome (BBS) proteins to the centrosome. In support of this model, loss of BBS1 leads to defects in migration, but not proliferation, whereas DISC1 knockdown leads to deficits in both. A phospho-dead mutant can only rescue proliferation, whereas a phospho-mimic mutant rescues exclusively migration defects. These data highlight a dual role for DISC1 in corticogenesis and indicate that phosphorylation of this protein at S710 activates a key developmental switch.


Subject(s)
Cerebral Cortex/embryology , Nerve Tissue Proteins , Neurons/cytology , Neurons/physiology , Stem Cells/cytology , Animals , COS Cells , Cell Movement/genetics , Cell Proliferation , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Chlorocebus aethiops , Gene Knockdown Techniques , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HEK293 Cells , Humans , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , PC12 Cells , Phosphorylation , Protein Binding , Rats , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism
4.
J Cell Sci ; 122(Pt 5): 611-24, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19208769

ABSTRACT

Meckel syndrome (MKS) is a ciliopathy characterized by encephalocele, cystic renal disease, liver fibrosis and polydactyly. An identifying feature of MKS1, one of six MKS-associated proteins, is the presence of a B9 domain of unknown function. Using phylogenetic analyses, we show that this domain occurs exclusively within a family of three proteins distributed widely in ciliated organisms. Consistent with a ciliary role, all Caenorhabditis elegans B9-domain-containing proteins, MKS-1 and MKS-1-related proteins 1 and 2 (MKSR-1, MKSR-2), localize to transition zones/basal bodies of sensory cilia. Their subcellular localization is largely co-dependent, pointing to a functional relationship between the proteins. This localization is evolutionarily conserved, because the human orthologues also localize to basal bodies, as well as cilia. As reported for MKS1, disrupting human MKSR1 or MKSR2 causes ciliogenesis defects. By contrast, single, double and triple C. elegans mks/mksr mutants do not display overt defects in ciliary structure, intraflagellar transport or chemosensation. However, we find genetic interactions between all double mks/mksr mutant combinations, manifesting as an increased lifespan phenotype, which is due to abnormal insulin-IGF-I signaling. Our findings therefore demonstrate functional interactions between a novel family of proteins associated with basal bodies or cilia, providing new insights into the molecular etiology of a pleiotropic human disorder.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Cilia/pathology , Proteins/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/classification , Caenorhabditis elegans Proteins/genetics , Cilia/metabolism , Evolution, Molecular , Humans , Molecular Sequence Data , Phenotype , Phylogeny , Proteins/classification , Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Signal Transduction/physiology
5.
Foot Ankle Clin ; 7(1): 107-20, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12380384

ABSTRACT

Even with greater emphasis on anatomic reduction, outcomes after calcaneal fractures continue to be unsatisfactory in many patients. Lateral wall impingement, subtalar arthrosis with pain and stiffness, nerve compression syndromes, and hindfoot malalignment all can cause disabling symptoms. If conservative treatment fails to relieve symptoms, subtalar arthrodesis can provide a painless, stable hindfoot in most patients. For severe deformity with anterior ankle impingement and loss of the talar angle of declination, distraction bone block arthrodesis through a posterior approach is preferred.


Subject(s)
Arthrodesis/methods , Calcaneus/surgery , Fractures, Bone/complications , Fractures, Malunited/surgery , Salvage Therapy , Subtalar Joint/surgery , Calcaneus/injuries , Fractures, Bone/surgery , Fractures, Malunited/diagnostic imaging , Humans , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...