Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2021): 20232335, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628129

ABSTRACT

Many animals and plants have species-typical annual cycles, but individuals vary in their timing of life-history events. Individual variation in fur replacement (moult) timing is poorly understood in mammals due to the challenge of repeated observations and longitudinal sampling. We examined factors that influence variation in moult duration and timing among elephant seals (Mirounga angustirostris). We quantified the onset and progression of fur loss in 1178 individuals. We found that an exceptionally rapid visible moult (7 days, the shortest of any mammals or birds), and a wide range of moult start dates (spanning 6-10× the event duration) facilitated high asynchrony across individuals (only 20% of individuals in the population moulting at the same time). Some of the variation was due to reproductive state, as reproductively mature females that skipped a breeding season moulted a week earlier than reproductive females. Moreover, individual variation in timing and duration within age-sex categories far outweighed (76-80%) variation among age-sex categories. Individuals arriving at the end of the moult season spent 50% less time on the beach, which allowed them to catch up in their annual cycles and reduce population-level variance during breeding. These findings underscore the importance of individual variation in annual cycles.


Subject(s)
Birds , Seals, Earless , Animals , Female , Molting , Reproduction , Mammals , Seasons
2.
Nat Ecol Evol ; 8(4): 686-694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383849

ABSTRACT

Populations and species are threatened by human pressure, but their fate is variable. Some depleted populations, such as that of the northern elephant seal (Mirounga angustirostris), recover rapidly even when the surviving population was small. The northern elephant seal was hunted extensively and taken by collectors between the early 1800s and 1892, suffering an extreme population bottleneck as a consequence. Recovery was rapid and now there are over 200,000 individuals. We sequenced 260 modern and 8 historical northern elephant seal nuclear genomes to assess the impact of the population bottleneck on individual northern elephant seals and to better understand their recovery. Here we show that inbreeding, an increase in the frequency of alleles compromised by lost function, and allele frequency distortion, reduced the fitness of breeding males and females, as well as the performance of adult females on foraging migrations. We provide a detailed investigation of the impact of a severe bottleneck on fitness at the genomic level and report on the role of specific gene systems.


Subject(s)
Genomics , Seals, Earless , Male , Female , Humans , Animals , Base Sequence , Seals, Earless/genetics
3.
R Soc Open Sci ; 11(1): 230666, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38179081

ABSTRACT

Understanding the ontogeny of diving behaviour in marine megafauna is crucial owing to its influence on foraging success, energy budgets, and mortality. We compared the ontogeny of diving behaviour in two closely related species-northern elephant seals (Mirounga angustirostris, n = 4) and southern elephant seals (Mirounga leonina, n = 9)-to shed light on the ecological processes underlying migration. Although both species have similar sizes and behaviours as adults, we discovered that juvenile northern elephant seals have superior diving development, reaching 260 m diving depth in just 30 days, while southern elephant seals require 160 days. Similarly, northern elephant seals achieve dive durations of approximately 11 min on their first day of migration, while southern elephant seals take 125 days. The faster physiological maturation of northern elephant seals could be related to longer offspring dependency and post-weaning fast durations, allowing them to develop their endogenous oxygen stores. Comparison across both species suggests that weaned seal pups face a trade-off between leaving early with higher energy stores but poorer physiological abilities or leaving later with improved physiology but reduced fat stores. This trade-off might be influenced by their evolutionary history, which shapes their migration behaviours in changing environments over time.

4.
Science ; 380(6642): 260-265, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37079694

ABSTRACT

Sleep is a crucial part of the daily activity patterns of mammals. However, in marine species that spend months or entire lifetimes at sea, the location, timing, and duration of sleep may be constrained. To understand how marine mammals satisfy their daily sleep requirements while at sea, we monitored electroencephalographic activity in wild northern elephant seals (Mirounga angustirostris) diving in Monterey Bay, California. Brain-wave patterns showed that seals took short (less than 20 minutes) naps while diving (maximum depth 377 meters; 104 sleeping dives). Linking these patterns to accelerometry and the time-depth profiles of 334 free-ranging seals (514,406 sleeping dives) revealed a North Pacific sleepscape in which seals averaged only 2 hours of sleep per day for 7 months, rivaling the record for the least sleep among all mammals, which is currently held by the African elephant (about 2 hours per day).


Subject(s)
Brain , Seals, Earless , Sleep , Animals , Brain/physiology , Seals, Earless/physiology , Time Factors
5.
Ecol Lett ; 26(5): 706-716, 2023 May.
Article in English | MEDLINE | ID: mdl-36888564

ABSTRACT

Although anthropogenic change is often gradual, the impacts on animal populations may be precipitous if physiological processes create tipping points between energy gain, reproduction or survival. We use 25 years of behavioural, diet and demographic data from elephant seals to characterise their relationships with lifetime fitness. Survival and reproduction increased with mass gain during long foraging trips preceding the pupping seasons, and there was a threshold where individuals that gained an additional 4.8% of their body mass (26 kg, from 206 to 232 kg) increased lifetime reproductive success three-fold (from 1.8 to 4.9 pups). This was due to a two-fold increase in pupping probability (30% to 76%) and a 7% increase in reproductive lifespan (6.0 to 6.4 years). The sharp threshold between mass gain and reproduction may explain reproductive failure observed in many species and demonstrates how small, gradual reductions in prey from anthropogenic disturbance could have profound implications for animal populations.


Subject(s)
Mammals , Reproduction , Animals , Seasons
6.
R Soc Open Sci ; 10(1): 220500, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36704255

ABSTRACT

Weddell seals (Leptonychotes weddellii) are important predators in the Southern Ocean and are among the best-studied pinnipeds on Earth, yet much still needs to be learned about their year-round movements and foraging behaviour. Using biologgers, we tagged 62 post-moult Weddell seals in McMurdo Sound and vicinity between 2010 and 2012. Generalized additive mixed models were used to (i) explain and predict the probability of seal presence and foraging behaviour from eight environmental variables, and (ii) examine foraging behaviour in relation to dive metrics. Foraging probability was highest in winter and lowest in summer, and foraging occurred mostly in the water column or just above the bottom; across all seasons, seals preferentially exploited the shallow banks and deeper troughs of the Ross Sea, the latter providing a pathway for Circumpolar Deep Water to flow onto the shelf. In addition, the probability of Weddell seal occurrence and foraging increased with increasing bathymetric slope and where water depth was typically less than 600 m. Although the probability of occurrence was higher closer to the shelf break, foraging was higher in areas closer to shore and over banks. This study highlights the importance of overwinter foraging for recouping body mass lost during the previous summer.

7.
Proc Natl Acad Sci U S A ; 119(25): e2119502119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696561

ABSTRACT

The darkness of the deep ocean limits the vision of diving predators, except when prey emit bioluminescence. It is hypothesized that deep-diving seals rely on highly developed whiskers to locate their prey. However, if and how seals use their whiskers while foraging in natural conditions remains unknown. We used animal-borne tags to show that free-ranging elephant seals use their whiskers for hydrodynamic prey sensing. Small, cheek-mounted video loggers documented seals actively protracting their whiskers in front of their mouths with rhythmic whisker movement, like terrestrial mammals exploring their environment. Seals focused their sensing effort at deep foraging depths, performing prolonged whisker protraction to detect, pursue, and capture prey. Feeding-event recorders with light sensors demonstrated that bioluminescence contributed to only about 20% of overall foraging success, confirming that whiskers play the primary role in sensing prey. Accordingly, visual prey detection complemented and enhanced prey capture. The whiskers' role highlights an evolutionary alternative to echolocation for adapting to the extreme dark of the deep ocean environment, revealing how sensory abilities shape foraging niche segregation in deep-diving mammals. Mammals typically have mobile facial whiskers, and our study reveals the significant function of whiskers in the natural foraging behavior of a marine predator. We demonstrate the importance of field-based sensory studies incorporating multimodality to better understand how multiple sensory systems are complementary in shaping the foraging success of predators.


Subject(s)
Feeding Behavior , Predatory Behavior , Seals, Earless , Vibrissae , Animals , Hydrodynamics , Seals, Earless/physiology , Vibrissae/physiology
8.
Curr Biol ; 32(4): R156-R157, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35231406

ABSTRACT

Many marine animals migrate between foraging areas and reproductive sites, often timing the return migration with extreme precision. In theory, the decision to return should reflect energy acquisition at foraging areas, energetic costs associated with transit, and timing arrival for successful reproduction. For long-distance migrations to be successful, animals must integrate 'map' information to assess where they are relative to their reproductive site as well as 'calendar' information to know when to initiate the return migration given their distance from home1. Elephant seals, Mirounga angustirostris, migrate thousands of kilometers from reproductive sites to open ocean foraging areas (Figure 1A), yet return within a narrow window of time to specific beaches2. Each year, pregnant female elephant seals undertake a ∼240-day, 10,000 km foraging migration across the Northeast Pacific Ocean before returning to their breeding beaches, where they give birth 5 days after arriving2. We found that the seals' abilities to adjust the timing of their return migration is based on the perception of space and time, which further elucidates the mechanisms behind their astonishing navigational feats3.


Subject(s)
Seals, Earless , Animals , Female , Pacific Ocean , Pregnancy , Reproduction
9.
Proc Biol Sci ; 288(1960): 20211258, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34641731

ABSTRACT

All organisms face resource limitations that will ultimately restrict population growth, but the controlling mechanisms vary across ecosystems, taxa, and reproductive strategies. Using four decades of data, we examine how variation in the environment and population density affect reproductive outcomes in a capital-breeding carnivore, the northern elephant seal (Mirounga angustirostris). This species provides a unique opportunity to examine the relative importance of resource acquisition and density-dependence on breeding success. Capital breeders accrue resources over large temporal and spatial scales for use during an abbreviated reproductive period. This strategy may have evolved, in part, to confer resilience to short-term environmental variability. We observed density-dependent effects on weaning mass, and maternal age (experience) was more important than oceanographic conditions or maternal mass in determining offspring weaning mass. Together these findings show that the mechanisms controlling reproductive output are conserved across terrestrial and marine systems and vary with population dynamics, an important consideration when assessing the effect of extrinsic changes, such as climate change, on a population.


Subject(s)
Ecosystem , Seals, Earless , Animals , Climate Change , Female , Pregnancy , Reproduction , Weaning
10.
Sci Adv ; 7(20)2021 05.
Article in English | MEDLINE | ID: mdl-33980496

ABSTRACT

Small mesopelagic fishes dominate the world's total fish biomass, yet their ecological importance as prey for large marine animals is poorly understood. To reveal the little-known ecosystem dynamics, we identified prey, measured feeding events, and quantified the daily energy balance of 48 deep-diving elephant seals throughout their oceanic migrations by leveraging innovative technologies: animal-borne smart accelerometers and video cameras. Seals only attained positive energy balance after feeding 1000 to 2000 times per day on small fishes, which required continuous deep diving (80 to 100% of each day). Interspecies allometry suggests that female elephant seals have exceptional diving abilities relative to their body size, enabling them to exploit a unique foraging niche on small but abundant mesopelagic fish. This unique foraging niche requires extreme round-the-clock deep diving, limiting the behavioral plasticity of elephant seals to a changing mesopelagic ecosystem.

11.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: mdl-33731347

ABSTRACT

Like landscapes of fear, animals are hypothesized to strategically use lightscapes based on intrinsic motivations. However, longitudinal evidence of state-dependent risk aversion has been difficult to obtain in wild animals. Using high-resolution biologgers, we continuously measured body condition, time partitioning, three-dimensional movement, and risk exposure of 71 elephant seals throughout their 7-month foraging migrations (N = 16,000 seal days). As body condition improved from 21 to 32% fat and daylength declined from 16 to 10 hours, seals rested progressively earlier with respect to sunrise, sacrificing valuable nocturnal foraging hours to rest in the safety of darkness. Seals in superior body condition prioritized safety over energy conservation by resting >100 meters deeper where it was 300× darker. Together, these results provide empirical evidence that marine mammals actively use the three-dimensional lightscape to optimize risk-reward trade-offs based on ecological and physiological factors.


Subject(s)
Predatory Behavior , Seals, Earless , Animals , Fear , Seals, Earless/physiology , Seasons
12.
Proc Biol Sci ; 288(1947): 20202817, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33726591

ABSTRACT

Seasonal resource pulses can have enormous impacts on species interactions. In marine ecosystems, air-breathing predators often drive their prey to deeper waters. However, it is unclear how ephemeral resource pulses such as near-surface phytoplankton blooms alter the vertical trade-off between predation avoidance and resource availability in consumers, and how these changes cascade to the diving behaviour of top predators. We integrated data on Weddell seal diving behaviour, diet stable isotopes, feeding success and mass gain to examine shifts in vertical foraging throughout ice break-out and the resulting phytoplankton bloom each year. We also tested hypotheses about the likely location of phytoplankton bloom origination (advected or produced in situ where seals foraged) based on sea ice break-out phenology and advection rates from several locations within 150 km of the seal colony. In early summer, seals foraged at deeper depths resulting in lower feeding rates and mass gain. As sea ice extent decreased throughout the summer, seals foraged at shallower depths and benefited from more efficient energy intake. Changes in diving depth were not due to seasonal shifts in seal diets or horizontal space use and instead may reflect a change in the vertical distribution of prey. Correspondence between the timing of seal shallowing and the resource pulse was variable from year to year and could not be readily explained by our existing understanding of the ocean and ice dynamics. Phytoplankton advection occurred faster than ice break-out, and seal dive shallowing occurred substantially earlier than local break-out. While there remains much to be learned about the marine ecosystem, it appears that an increase in prey abundance and accessibility via shallower distributions during the resource pulse could synchronize life-history phenology across trophic levels in this high-latitude ecosystem.


Subject(s)
Ecosystem , Seals, Earless , Animals , Feeding Behavior , Oceans and Seas , Predatory Behavior , Seasons
13.
PLoS One ; 16(2): e0244040, 2021.
Article in English | MEDLINE | ID: mdl-33617554

ABSTRACT

Repeated counts of animal abundance can reveal changes in local ecosystem health and inform conservation strategies. Unmanned aircraft systems (UAS), also known as drones, are commonly used to photograph animals in remote locations; however, counting animals in images is a laborious task. Crowd-sourcing can reduce the time required to conduct these censuses considerably, but must first be validated against expert counts to measure sources of error. Our objectives were to assess the accuracy and precision of citizen science counts and make recommendations for future citizen science projects. We uploaded drone imagery from Año Nuevo Island (California, USA) to a curated Zooniverse website that instructed citizen scientists to count seals and sea lions. Across 212 days, over 1,500 volunteers counted animals in 90,000 photographs. We quantified the error associated with several descriptive statistics to extract a single citizen science count per photograph from the 15 repeat counts and then compared the resulting citizen science counts to expert counts. Although proportional error was relatively low (9% for sea lions and 5% for seals during the breeding seasons) and improved with repeat sampling, the 12+ volunteers required to reduce error was prohibitively slow, taking on average 6 weeks to estimate animals from a single drone flight covering 25 acres, despite strong public outreach efforts. The single best algorithm was 'Median without the lowest two values', demonstrating that citizen scientists tended to under-estimate the number of animals present. Citizen scientists accurately counted adult seals, but accuracy was lower when sea lions were present during the summer and could be confused for seals. We underscore the importance of validation efforts and careful project design for researchers hoping to combine citizen science with imagery from drones, occupied aircraft, and/or remote cameras.


Subject(s)
Citizen Science , Ecosystem , Fur Seals , Sea Lions , Aircraft , Animals , Humans , Population Dynamics
14.
Mov Ecol ; 8: 31, 2020.
Article in English | MEDLINE | ID: mdl-32695402

ABSTRACT

BACKGROUND: State-space models are important tools for quality control and analysis of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system can aid dynamic ocean management of human activities by informing when animals enter wind farms, shipping lanes, and other intensive use zones. This capability also facilitates the use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations. METHODS: We formulate a continuous-time state-space model to filter the three types of Argos location data (Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos location data. We validate the model by fitting to Argos locations collected from 61 individuals across 7 marine vertebrates and compare model-estimated locations to contemporaneous GPS locations. We then test assumptions that Argos Kalman filter/smoother error ellipses are unbiased, and that Argos Kalman smoother location accuracy cannot be improved by subsequent state-space modelling. RESULTS: Estimation accuracy varied among species with Root Mean Squared Errors usually <5 km and these decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate Argos error ellipse sizes in the north - south direction resulted in more accurate location estimates. Finally, in some cases the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be possible if the smoother is using all available information. CONCLUSIONS: Our model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with accuracy similar to or marginally better than Argos Kalman smoother data that are only available via fee-based reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time Argos data and for manual use by researchers working with historical Argos data.

15.
J Exp Biol ; 223(Pt 5)2020 02 28.
Article in English | MEDLINE | ID: mdl-32041802

ABSTRACT

Knowledge of the diet of marine mammals is fundamental to understanding their role in marine ecosystems and response to environmental change. Recently, animal-borne video cameras have revealed the diet of marine mammals that make short foraging trips. However, novel approaches that allocate video time to target prey capture events is required to obtain diet information for species that make long foraging trips over great distances. We combined satellite telemetry and depth recorders with newly developed date-/time-, depth- and acceleration-triggered animal-borne video cameras to examine the diet of female northern elephant seals during their foraging migrations across the eastern North Pacific. We obtained 48.2 h of underwater video, from cameras mounted on the head (n=12) and jaw (n=3) of seals. Fish dominated the diet (78% of 697 prey items recorded) across all foraging locations (range: 37-55°N, 122-152°W), diving depths (range: 238-1167 m) and water temperatures (range: 3.2-7.4°C), while squid comprised only 7% of the diet. Identified prey included fish such as myctophids, Merluccius sp. and Icosteus aenigmaticus, and squid such as Histioteuthis sp., Octopoteuthis sp. and Taningia danae Our results corroborate fatty acid analysis, which also found that fish are more important in the diet, and are in contrast to stomach content analyses that found cephalopods to be the most important component of the diet. Our work shows that in situ video observation is a useful method for studying the at-sea diet of long-ranging marine predators.


Subject(s)
Diet/veterinary , Feeding Behavior , Seals, Earless/physiology , Video Recording , Acceleration , Animals , Female
16.
Nat Ecol Evol ; 2(10): 1571-1578, 2018 10.
Article in English | MEDLINE | ID: mdl-30177802

ABSTRACT

During their migrations, marine predators experience varying levels of protection and face many threats as they travel through multiple countries' jurisdictions and across ocean basins. Some populations are declining rapidly. Contributing to such declines is a failure of some international agreements to ensure effective cooperation by the stakeholders responsible for managing species throughout their ranges, including in the high seas, a global commons. Here we use biologging data from marine predators to provide quantitative measures with great potential to inform local, national and international management efforts in the Pacific Ocean. We synthesized a large tracking data set to show how the movements and migratory phenology of 1,648 individuals representing 14 species-from leatherback turtles to white sharks-relate to the geopolitical boundaries of the Pacific Ocean throughout species' annual cycles. Cumulatively, these species visited 86% of Pacific Ocean countries and some spent three-quarters of their annual cycles in the high seas. With our results, we offer answers to questions posed when designing international strategies for managing migratory species.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , International Cooperation , Oceans and Seas , Pacific Ocean
17.
Proc Biol Sci ; 285(1885)2018 08 22.
Article in English | MEDLINE | ID: mdl-30135161

ABSTRACT

How animal movement decisions interact with the distribution of resources to shape individual performance is a key question in ecology. However, links between spatial and behavioural ecology and fitness consequences are poorly understood because the outcomes of individual resource selection decisions, such as energy intake, are rarely measured. In the open ocean, mesoscale features (approx. 10-100 km) such as fronts and eddies can aggregate prey and thereby drive the distribution of foraging vertebrates through bottom-up biophysical coupling. These productive features are known to attract predators, yet their role in facilitating energy transfer to top-level consumers is opaque. We investigated the use of mesoscale features by migrating northern elephant seals and quantified the corresponding energetic gains from the seals' foraging patterns at a daily resolution. Migrating elephant seals modified their diving behaviour and selected for mesoscale features when foraging. Daily energy gain increased significantly with increasing mesoscale activity, indicating that the physical environment can influence predator fitness at fine temporal scales. Results show that areas of high mesoscale activity not only attract top predators as foraging hotspots, but also lead to increased energy transfer across trophic levels. Our study provides evidence that the physical environment is an important factor in controlling energy flow to top predators by setting the stage for variation in resource availability. Such understanding is critical for assessing how changes in the environment and resource distribution will affect individual fitness and food web dynamics.


Subject(s)
Energy Intake , Feeding Behavior , Food Chain , Seals, Earless/physiology , Animal Migration , Animals , Diving , Predatory Behavior
18.
Ecol Evol ; 8(5): 2788-2801, 2018 03.
Article in English | MEDLINE | ID: mdl-29531695

ABSTRACT

Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions (Zalophus californianus) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data (n = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool (<14°C), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.

19.
Ecol Lett ; 21(1): 63-71, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29096419

ABSTRACT

Individual behavioural specialisation has far-reaching effects on fitness and population persistence. Theory predicts that unconditional site fidelity, that is fidelity to a site independent of past outcome, provides a fitness advantage in unpredictable environments. However, the benefits of alternative site fidelity strategies driving intraspecific variation remain poorly understood and have not been evaluated in different environmental contexts. We show that contrary to expectation, strong and weak site fidelity strategies in migratory northern elephant seals performed similarly over 10 years, but the success of each strategy varied interannually and was strongly mediated by climate conditions. Strong fidelity facilitated stable energetic rewards and low risk, while weak fidelity facilitated high rewards and high risk. Weak fidelity outperformed strong fidelity in anomalous climate conditions, suggesting that the evolutionary benefits of site fidelity may be upended by increasing environmental variability. We highlight how individual behavioural specialisation may modulate the adaptive capacity of species to climate change.


Subject(s)
Animal Migration , Climate Change , Seals, Earless , Animals
20.
Ecol Evol ; 7(16): 6259-6270, 2017 08.
Article in English | MEDLINE | ID: mdl-28861230

ABSTRACT

Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish (Icosteus aenigmaticus) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.

SELECTION OF CITATIONS
SEARCH DETAIL
...