Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Nat Commun ; 15(1): 4060, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744819

ABSTRACT

Endocytosis requires a coordinated framework of molecular interactions that ultimately lead to the fission of nascent endocytic structures. How cytosolic proteins such as dynamin concentrate at discrete sites that are sparsely distributed across the plasma membrane remains poorly understood. Two dynamin-1 major splice variants differ by the length of their C-terminal proline-rich region (short-tail and long-tail). Using sptPALM in PC12 cells, neurons and MEF cells, we demonstrate that short-tail dynamin-1 isoforms ab and bb display an activity-dependent recruitment to the membrane, promptly followed by their concentration into nanoclusters. These nanoclusters are sensitive to both Calcineurin and dynamin GTPase inhibitors, and are larger, denser, and more numerous than that of long-tail isoform aa. Spatiotemporal modelling confirms that dynamin-1 isoforms perform distinct search patterns and undergo dimensional reduction to generate endocytic nanoclusters, with short-tail isoforms more robustly exploiting lateral trapping in the generation of nanoclusters compared to the long-tail isoform.


Subject(s)
Dynamin I , Endocytosis , Protein Isoforms , Animals , Dynamin I/metabolism , Dynamin I/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , PC12 Cells , Rats , Neurons/metabolism , Mice , Cell Membrane/metabolism , Calcineurin/metabolism
2.
Pediatr Blood Cancer ; 71(6): e30980, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556739

ABSTRACT

Survival rates in some paediatric cancers have improved greatly over recent decades, in part due to the identification of diagnostic, prognostic and predictive molecular signatures, and the development of risk-directed therapies. However, other paediatric cancers have proved difficult to treat, and there is an urgent need to identify novel biomarkers that reveal therapeutic opportunities. The proteome is the total set of expressed proteins present in a cell or tissue at a point in time, and is vastly more dynamic than the genome. Proteomics holds significant promise for cancer research, as proteins are ultimately responsible for cellular phenotype and are the target of most anticancer drugs. Here, we review the discoveries, opportunities and challenges of proteomic analyses in paediatric cancer, with a focus on mass spectrometry (MS)-based approaches. Accelerating incorporation of proteomics into paediatric precision medicine has the potential to improve survival and quality of life for children with cancer.


Subject(s)
Biomarkers, Tumor , Neoplasms , Proteomics , Humans , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Proteomics/methods , Child , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Precision Medicine/methods , Mass Spectrometry , Proteome/analysis
3.
Anal Chem ; 96(10): 4093-4102, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38427620

ABSTRACT

Proteomic analysis by mass spectrometry of small (≤2 mg) solid tissue samples from diverse formats requires high throughput and comprehensive proteome coverage. We developed a nearly universal, rapid, and robust protocol for sample preparation, suitable for high-throughput projects that encompass most cell or tissue types. This end-to-end workflow extends from original sample to loading the mass spectrometer and is centered on a one-tube homogenization and digestion method called Heat 'n Beat (HnB). It is applicable to most tissues, regardless of how they were fixed or embedded. Sample preparation was divided into separate challenges. The initial sample washing and final peptide cleanup steps were adapted to three tissue sources: fresh frozen (FF), optimal cutting temperature (OCT) compound embedded (FF-OCT), and formalin-fixed paraffin embedded (FFPE). Third, for core processing, tissue disruption and lysis were decreased to a 7 min heat and homogenization treatment, and reduction, alkylation, and proteolysis were optimized into a single step. The refinements produced near doubled peptide yield when compared to our earlier method ABLE delivered a consistently high digestion efficiency of 85-90%, reported by ProteinPilot, and required only 38 min for core processing in a single tube, with the total processing time being 53-63 min. The robustness of HnB was demonstrated on six organ types, a cell line, and a cancer biopsy. Its suitability for high-throughput applications was demonstrated on a set of 1171 FF-OCT human cancer biopsies, which were processed for end-to-end completion in 92 h, producing highly consistent peptide yield and quality for over 3513 MS runs.


Subject(s)
Hot Temperature , Neoplasms , Humans , Proteomics/methods , Peptides , Specimen Handling , Paraffin Embedding , Formaldehyde/chemistry , Tissue Fixation
4.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-38052461

ABSTRACT

Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial for patient treatment decisions. However, intermediate-risk patients diagnosed in the Gleason grade group (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, resulting in under- or overtreatment of a significant number of patients. Here, we performed proteomic, differential expression, machine learning, and survival analyses for 1,348 matched tumour and benign sample runs from 278 patients. Three proteins (F5, TMEM126B, and EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to dichotomize prostate cancer patients into low- and high-risk groups. This 18-protein signature is prognostic for the risk of biochemical recurrence and completely independent of the intermediate GG. Our results suggest that markers generated by computational proteomic profiling have the potential for clinical applications including integration into prostate cancer management.


Subject(s)
Prostatic Neoplasms , Proteomics , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Risk Factors , Neoplasm Grading
5.
bioRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37790502

ABSTRACT

Dynamin 1 (Dyn1) has two major splice variants, xA and xB, with unique C-terminal extensions of 20 and 7 amino acids, respectively. Of these, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that the long tail variant, Dyn1xA, achieves this localization by preferentially binding to Endophilin A through a newly defined Class II binding site overlapping with its extension, at a site spanning the splice boundary. Endophilin binds this site at higher affinity than the previously reported site, and this affinity is determined by amino acids outside the binding sites acting as long distance elements within the xA tail. Their interaction is regulated by the phosphorylation state of two serine residues specific to the xA variant. Dyn1xA and Endophilin colocalize in patches near the active zone of synapses. Mutations selectively disrupting Endophilin binding to the long extension cause Dyn1xA mislocalization along axons. In these mutants, endocytic pits are stalled on the plasma membrane during ultrafast endocytosis. These data suggest that the specificity for ultrafast endocytosis is defined by the phospho-regulated interaction of Endophilin A through a newly identified site of Dyn1xA's long tail.

6.
RSC Med Chem ; 14(8): 1492-1511, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37593570

ABSTRACT

We show that dansylcadaverine (1) a known in-cell inhibitor of clathrin mediated endocytosis (CME), moderately inhibits dynamin I (dynI) GTPase activity (IC50 45 µM) and transferrin (Tfn) endocytosis in U2OS cells (IC50 205 µM). Synthesis gave a new class of GTP-competitive dynamin inhibitors, the Sulfonadyns™. The introduction of a terminal cinnamyl moiety greatly enhanced dynI inhibition. Rigid diamine or amide links between the dansyl and cinnamyl moieties were detrimental to dynI inhibition. Compounds with in vitro inhibition of dynI activity <10 µM were tested in-cell for inhibition of CME. These data unveiled a number of compounds, e.g. analogues 33 ((E)-N-(6-{[(3-(4-bromophenyl)-2-propen-1-yl]amino}hexyl)-5-isoquinolinesulfonamide)) and 47 ((E)-N-(3-{[3-(4-bromophenyl)-2-propen-1-yl]amino}propyl)-1-naphthalenesulfonamide)isomers that showed dyn IC50 <4 µM, IC50(CME) <30 µM and IC50(SVE) from 12-265 µM. Both analogues (33 and 47) are at least 10 times more potent that the initial lead, dansylcadaverine (1). Enzyme kinetics revealed these sulfonamide analogues as being GTP competitive inhibitors of dynI. Sulfonadyn-47, the most potent SVE inhibitor observed (IC50(SVE) = 12.3 µM), significantly increased seizure threshold in a 6 Hz mouse psychomotor seizure test at 30 (p = 0.003) and 100 mg kg-1 ip (p < 0.0001), with similar anti-seizure efficacy to the established anti-seizure medication, sodium valproate (400 mg kg-1). The Sulfonadyn™ class of drugs target dynamin and show promise as novel leads for future anti-seizure medications.

7.
Front Oncol ; 13: 1126736, 2023.
Article in English | MEDLINE | ID: mdl-37197427

ABSTRACT

Sarcoma is a rare and complex disease comprising over 80 malignant subtypes that is frequently characterized by poor prognosis. Challenges in clinical management include uncertainties in diagnosis and disease classification, limited prognostic and predictive biomarkers, incompletely understood disease heterogeneity among and within subtypes, lack of effective treatment options, and limited progress in identifying new drug targets and novel therapeutics. Proteomics refers to the study of the entire complement of proteins expressed in specific cells or tissues. Advances in proteomics have included the development of quantitative mass spectrometry (MS)-based technologies which enable analysis of large numbers of proteins with relatively high throughput, enabling proteomics to be studied on a scale that has not previously been possible. Cellular function is determined by the levels of various proteins and their interactions, so proteomics offers the possibility of new insights into cancer biology. Sarcoma proteomics therefore has the potential to address some of the key current challenges described above, but it is still in its infancy. This review covers key quantitative proteomic sarcoma studies with findings that pertain to clinical utility. Proteomic methodologies that have been applied to human sarcoma research are briefly described, including recent advances in MS-based proteomic technology. We highlight studies that illustrate how proteomics may aid diagnosis and improve disease classification by distinguishing sarcoma histologies and identify distinct profiles within histological subtypes which may aid understanding of disease heterogeneity. We also review studies where proteomics has been applied to identify prognostic, predictive and therapeutic biomarkers. These studies traverse a range of histological subtypes including chordoma, Ewing sarcoma, gastrointestinal stromal tumors, leiomyosarcoma, liposarcoma, malignant peripheral nerve sheath tumors, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, osteosarcoma, and undifferentiated pleomorphic sarcoma. Critical questions and unmet needs in sarcoma which can potentially be addressed with proteomics are outlined.

8.
Eur J Med Chem ; 247: 115001, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36577213

ABSTRACT

Wiskostatin (1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol) (1) is a carbazole-based compound reported as a specific and relatively potent inhibitor of the N-WASP actin remodelling complex (S-isomer EC50 = 4.35 µM; R-isomer EC50 = 3.44 µM). An NMR solution structure showed that wiskostatin interacts with a cleft in the regulatory GTPase binding domain of N-WASP. However, numerous studies have reported wiskostatin's actions on membrane transport and cytokinesis that are independent of the N-WASP-Arp2/3 complex pathway, but offer limited alternative explanation. The large GTPase, dynamin has established functional roles in these pathways. This study reveals that wiskostatin and its analogues, as well as other carbazole-based compounds, are inhibitors of helical dynamin GTPase activity and endocytosis. We characterise the effects of wiskostatin on in vitro dynamin GTPase activity, in-cell endocytosis, and determine the importance of wiskostatin functional groups on these activities through design and synthesis of libraries of wiskostatin analogues. We also examine whether other carbazole-based scaffolds frequently used in research or the clinic also modulate dynamin and endocytosis. Understanding off-targets for compounds used as research tools is important to be able to confidently interpret their action on biological systems, particularly when the target and off-targets affect overlapping mechanisms (e.g. cytokinesis and endocytosis). Herein we demonstrate that wiskostatin is a dynamin inhibitor (IC50 20.7 ± 1.2 µM) and a potent inhibitor of clathrin mediated endocytosis (IC50 = 6.9 ± 0.3 µM). Synthesis of wiskostatin analogues gave rise to 1-(9H-carbazol-9-yl)-3-((4-methylbenzyl)amino)propan-2-ol (35) and 1-(9H-carbazol-9-yl)-3-((4-chlorobenzyl)amino)propan-2-ol (43) as potent dynamin inhibitors (IC50 = 1.0 ± 0.2 µM), and (S)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8a) and (R)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8b) that are amongst the most potent inhibitors of clathrin mediated endocytosis yet reported (IC50 = 2.3 ± 3.3 and 2.1 ± 1.7 µM, respectively).


Subject(s)
Dynamin I , Dynamins , Dynamin I/chemistry , Dynamin I/metabolism , Dynamins/pharmacology , Carbazoles/pharmacology , GTP Phosphohydrolases , Actins , Clathrin/metabolism , Clathrin/pharmacology , Endocytosis
9.
Proteomics ; 23(7-8): e2200031, 2023 04.
Article in English | MEDLINE | ID: mdl-36086888

ABSTRACT

Proteomic data are a uniquely valuable resource for drug response prediction and biomarker discovery because most drugs interact directly with proteins in target cells rather than with DNA or RNA. Recent advances in mass spectrometry and associated processing methods have enabled the generation of large-scale proteomic datasets. Here we review the significant opportunities that currently exist to combine large-scale proteomic data with drug-related research, a field termed pharmacoproteomics. We describe successful applications of drug response prediction using molecular data, with an emphasis on oncology. We focus on technical advances in data-independent acquisition mass spectrometry (DIA-MS) that can facilitate the discovery of protein biomarkers for drug responses, alongside the increased availability of big biomedical data. We spotlight new opportunities for machine learning in pharmacoproteomics, driven by the combination of these large datasets and improved high-performance computing. Finally, we explore the value of pre-clinical models for pharmacoproteomic studies and the accompanying challenges of clinical validation. We propose that pharmacoproteomics offers the potential for novel discovery and innovation within the cancer landscape.


Subject(s)
Neoplasms , Proteomics , Humans , Proteomics/methods , Biomarkers/analysis , Mass Spectrometry/methods , Proteins , Neoplasms/drug therapy
10.
Proteomics ; 23(7-8): e2200238, 2023 04.
Article in English | MEDLINE | ID: mdl-35968695

ABSTRACT

Tumor tissue processing methodologies in combination with data-independent acquisition mass spectrometry (DIA-MS) have emerged that can comprehensively analyze the proteome of multiple tumor samples accurately and reproducibly. Increasing recognition and adoption of these technologies has resulted in a tranche of studies providing novel insights into cancer classification systems, functional tumor biology, cancer biomarkers, treatment response and drug targets. Despite this, with some limited exceptions, MS-based proteomics has not yet been implemented in routine cancer clinical practice. Here, we summarize the use of DIA-MS in studies that may pave the way for future clinical cancer applications, and highlight the role of alternative MS technologies and multi-omic strategies. We discuss limitations and challenges of studies in this field to date and propose steps for integrating proteomic data into the cancer clinic.


Subject(s)
Neoplasms , Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Biomarkers, Tumor , Proteome/analysis
11.
ChemMedChem ; 17(24): e202200400, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36351775

ABSTRACT

The Bis-T series of compounds comprise some of the most potent inhibitors of dynamin GTPase activity yet reported, e. g., (2E,2'E)-N,N'-(propane-1,3-diyl)bis(2-cyano-3-(3,4-dihydroxyphenyl)acrylamide) (2), Bis-T-22. The catechol moieties are believed to limit cell permeability, rendering these compounds largely inactive in cells. To solve this problem, a prodrug strategy was envisaged and eight ester analogues were synthesised. The shortest and bulkiest esters (acetate and butyl/tert-butyl) were found to be insoluble under physiological conditions, whilst the remaining five were soluble and stable under these conditions. These five were analysed for plasma stability and half-lives ranged from ∼2.3 min (propionic ester 4), increasing with size and bulk, to greater than 24 hr (dimethyl carbamate 10). Similar profiles where observed with the rate of formation of Bis-T-22 with half-lives ranging from ∼25 mins (propionic ester 4). Propionic ester 4 was chosen to undergo further testing and was found to inhibit endocytosis in a dose-dependent manner with IC50 ∼8 µM, suggesting this compound is able to effectively cross the cell membrane where it is rapidly hydrolysed to the desired Bis-T-22 parent compound.


Subject(s)
Prodrugs , Prodrugs/pharmacology , Dynamins/pharmacology , Esters/pharmacology , Endocytosis
12.
Cancer Cell ; 40(8): 835-849.e8, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35839778

ABSTRACT

The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.


Subject(s)
Neoplasms , Proteomics , Biomarkers, Tumor/genetics , Cell Line , Humans , Neoplasms/genetics , Proteome/metabolism , Proteomics/methods
13.
Proteomics Clin Appl ; 16(5): e2200015, 2022 09.
Article in English | MEDLINE | ID: mdl-35579911

ABSTRACT

PURPOSE: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. It is generally diagnosed clinically after the irreversible loss of dopaminergic neurons and no general biomarkers currently exist. To gain insight into the underlying cellular causes of PD we aimed to quantify the proteomic differences between healthy control and PD patient cells. EXPERIMENTAL DESIGN: Sequential Window Acquisition of all THeoretical Mass Spectra was performed on primary cells from healthy controls and PD patients. RESULTS: In total, 1948 proteins were quantified and 228 proteins were significantly differentially expressed in PD patient cells. In PD patient cells, we identified seven significantly increased proteins involved in the unfolded protein response (UPR) and focused on cells with high and low amounts of PDIA6 and HYOU1. We discovered that PD patients with high amounts of PDIA6 and HYOU1 proteins were more sensitive to endoplasmic reticulum stress, in particular to tunicamycin. Data is available via ProteomeXchange with identifier PXD030723. CONCLUSIONS AND CLINICAL RELEVANCE: This data from primary patient cells has uncovered a critical role of the UPR in patients with PD and may provide insight to the underlying cellular dysfunctions in these patients.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Biomarkers , Humans , Parkinson Disease/metabolism , Proteomics , Tunicamycin/pharmacology
14.
Methods Mol Biol ; 2417: 221-238, 2022.
Article in English | MEDLINE | ID: mdl-35099803

ABSTRACT

This protocol describes the chemical synthesis of the dynamin inhibitors Dynole 34-2 and Acrylo-Dyn 2-30, and their chemical scaffold matched partner inactive compounds. The chosen active and inactive paired compounds represent potent dynamin inhibitors and very closely related dynamin-inactive compounds, with the synthesis of three of the four compounds readily possible via a common intermediate. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.


Subject(s)
Dynamins , Endocytosis , Cyanoacrylates , Indoles/chemistry
15.
Methods Mol Biol ; 2417: 239-258, 2022.
Article in English | MEDLINE | ID: mdl-35099804

ABSTRACT

Herein we describe the detailed synthesis of the dynamin inhibitors Phthaladyn-29 and Napthaladyn-10, and their chemical scaffold matched partner inactive compounds. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.


Subject(s)
Endocytosis , Naphthalimides , Dynamins/metabolism , Guanosine Triphosphate/metabolism
16.
ChemMedChem ; 17(1): e202100560, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34590434

ABSTRACT

Five focused libraries of pyrimidine-based dynamin GTPase inhibitors, in total 69 compounds were synthesised, and their dynamin inhibition and broad-spectrum cytotoxicity examined. Dynamin plays a crucial role in mitosis, and as such inhibition of dynamin was expected to broadly correlate with the observed cytotoxicity. The pyrimidines synthesised ranged from mono-substituted to trisubstituted. The highest levels of dynamin inhibition were noted with di- and tri- substituted pyrimidines, especially those with pendent amino alkyl chains. Short chains and simple heterocyclic rings reduced dynamin activity. There were three levels of dynamin activity noted: 1-10, 10-25 and 25-60 µM. Screening of these compounds in a panel of cancer cell lines: SW480 (colon), HT29 (colon), SMA (spontaneous murine astrocytoma), MCF-7 (breast), BE2-C (glioblastoma), SJ-G2 (neuroblastoma), MIA (pancreas), A2780 (ovarian), A431 (skin), H460 (lung), U87 (glioblastoma) and DU145 (prostate) cell lines reveal a good correlation between the observed dynamin inhibition and the observed cytotoxicity. The most active analogues (31 a,b) developed returned average GI50 values of 1.0 and 0.78 µM across the twelve cell lines examined. These active analogues were: N2 -(3-dimethylaminopropyl)-N4 -dodecyl-6-methylpyrimidine-2,4-diamine (31 a) and N4 -(3-dimethylaminopropyl)-N2 -dodecyl-6-methylpyrimidine-2,4-diamine (31 b).


Subject(s)
Antineoplastic Agents/pharmacology , Cytotoxins/pharmacology , Dynamins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Dynamins/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
17.
Exp Hematol ; 104: 17-31, 2021 12.
Article in English | MEDLINE | ID: mdl-34563604

ABSTRACT

Endocytosis entails selective packaging of cell surface cargos in cytoplasmic vesicles, thereby controlling key intrinsic cellular processes as well as the response of normal and malignant cells to their microenvironment. The purpose of this review is to outline the latest advances in the development of endocytosis-targeting therapeutic strategies in hematological malignancies.


Subject(s)
Endocytosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Molecular Targeted Therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Humans , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy/methods , Tumor Microenvironment/drug effects
19.
Methods Mol Biol ; 2233: 71-91, 2021.
Article in English | MEDLINE | ID: mdl-33222128

ABSTRACT

Endocytosis is the dynamic internalization of cargo (receptors, hormones, viruses) for cellular signaling or processing. It involves multiple mechanisms, classified depending on critical proteins involved, speed, morphology of the derived intracellular vesicles, or substance trafficked. Pharmacological targeting of specific endocytosis pathways has a proven utility for diverse clinical applications from epilepsy to cancer. A multiplexable, high-content screening assay has been designed and implemented to assess various forms of endocytic trafficking and the associated impact of potential small molecule modulators. The applications of this assay include (1) drug discovery in the search for specific, cell-permeable endocytosis pathway inhibitors (and associated analogues from structure-activity relationship studies), (2) deciphering the mechanism of internalization for a novel ligand (using pathway-specific inhibitors), (3) assessment of the importance of specific proteins in the trafficking process (using CRISPR-Cas9 technology, siRNA treatment, or transfection), and (4) identifying whether endocytosis inhibition is an off-target for novel compounds designed for alternative purposes. We describe this method in detail and provide a range of troubleshooting options and alternatives to modify the protocol for lab-specific applications.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Endocytosis/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Clathrin/chemistry , Humans , Ligands
20.
Nat Commun ; 11(1): 6211, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277497

ABSTRACT

Intensive chemotherapy for acute leukemia can usually induce complete remission, but fails in many patients to eradicate the leukemia stem cells responsible for relapse. There is accumulating evidence that these relapse-inducing cells are maintained and protected by signals provided by the microenvironment. Thus, inhibition of niche signals is a proposed strategy to target leukemia stem cells but this requires knowledge of the critical signals and may be subject to compensatory mechanisms. Signals from the niche require receptor-mediated endocytosis, a generic process dependent on the Dynamin family of large GTPases. Here, we show that Dynole 34-2, a potent inhibitor of Dynamin GTPase activity, can block transduction of key signalling pathways and overcome chemoresistance of leukemia stem cells. Our results provide a significant conceptual advance in therapeutic strategies for acute leukemia that may be applicable to other malignancies in which signals from the niche are involved in disease progression and chemoresistance.


Subject(s)
Cyanoacrylates/pharmacology , Dynamins/antagonists & inhibitors , Endocytosis/drug effects , Indoles/pharmacology , Leukemia, Myeloid/drug therapy , Xenograft Model Antitumor Assays/methods , Acute Disease , Animals , Cell Line, Tumor , Dynamins/metabolism , Humans , Leukemia, Myeloid/metabolism , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Neoplastic Stem Cells/drug effects , Stem Cell Niche/drug effects , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...