Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 129(51): 16263-72, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18034493

ABSTRACT

Photolysis of beta-azido propiophenone derivatives, 1, with built-in sensitizer units, leads to selective formation of triplet alkyl nitrenes 2 that were detected directly with laser flash photolysis (lambdamax = 325 nm, tau = 27 ms) and ESR spectroscopy (|D/hc| = 1.64 cm-1, |E/hc| = 0.004 cm-1). Nitrenes 2 were further characterized with argon matrix isolation, isotope labeling, and molecular modeling. The triplet alkyl nitrenes are persistent intermediates that do not abstract H-atoms from the solvent but do decay by dimerizing with another triplet nitrene to form azo products, rather than reacting with an azide precursor. The azo dimer tautomerizes and rearranges to form heterocyclic compound 3. Nitrene 2a, with an n,pi* configuration as the lowest triplet excited state of the its ketone sensitizer moiety, undergoes intramolecular 1,4-H-atom abstraction to form biradical 6, which was identified by argon matrix isolation, isotope labeling, and molecular modeling. beta-Azido-p-methoxy-propiophenone, with a pi,pi* lowest excited state of its triplet sensitizer moiety, does not undergo any secondary photoreactions but selectively yields only triplet alkyl nitrene intermediates that dimerize to form 3b.

2.
J Org Chem ; 68(21): 7951-60, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-14535770

ABSTRACT

We report the first detection of triplet alkyl nitrenes in fluid solution by laser flash photolysis of alpha-azido acetophenone derivatives, 1. Alphazides 1 contain an intramolecular triplet sensitizer, which ensures formation of the triplet alkyl nitrene by bypassing the singlet nitrene intermediate. At room temperature, azides 1 cleave to form benzoyl and methyl azide radicals in competition with triplet energy transfer to form triplet alkyl nitrene. The major photoproduct 3 arises from interception of the triplet alkyl nitrene with benzoyl radicals. The triplet alkyl nitrene intermediates are also trapped with molecular oxygen to yield the corresponding 2-nitrophenylethanone. Laser flash photolysis of 1 reveals that the triplet alkyl nitrenes have absorption around 300 nm. The triplet alkyl nitrenes were further characterized by obtaining their UV and IR spectra in argon matrices. (13)C and (15)N isotope labeling studies allowed us to characterize the C-N stretch of the nitrene intermediate at 1201 cm(-)(1).

3.
J Org Chem ; 68(5): 1964-72, 2003 Mar 07.
Article in English | MEDLINE | ID: mdl-12608818

ABSTRACT

We have designed molecules which release alcohols upon exposure to UV light independent of the reaction media, making it possible to liberate alcohols in a controlled manner in applications. Photolysis of 2-(2-isopropylbenzoyl)benzoate ester derivatives 4 in various solvents and in thin films results in the liberation of the alcohol moiety from the ester. The reaction mechanism for the release of the alcohol has been elucidated by time-resolved laser flash photolysis. Upon irradiation the triplet excited state of ketone, 4 is formed, and its lifetime can be estimated to be between 0.08 and 0.8 ns. The triplet excited state decays by efficient intramolecular H-atom abstraction to form a 1,4-biradical, 8, that has a lifetime of less than 17 ns and is trapped by molecular oxygen. In the absence of oxygen, biradical 8 intersystem crosses to form photoenols (Z)-9 and (E)-10 in a ratio of 5:2, respectively. Photoenol (Z)-9 has a lifetime of approximately 3000 ns in protic solvents and returns to the starting material through 1,5 intramolecular hydrogen transfer. The other isomer, (E)-10, is much longer lived (>1 ms) and releases the alcohol moiety through an intramolecular lactonization.

SELECTION OF CITATIONS
SEARCH DETAIL
...