Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
EBioMedicine ; 102: 105090, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547578

ABSTRACT

BACKGROUND: Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS: We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS: We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION: Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING: Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).


Subject(s)
Aminopyridines , Bone Neoplasms , Chondrosarcoma , Sarcoma , Triazines , Humans , Animals , Mice , Precision Medicine , Chondrosarcoma/drug therapy , Chondrosarcoma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Bone Neoplasms/genetics
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511533

ABSTRACT

The chimeric EWSR1::FLI1 transcription factor is the main oncogenic event in Ewing sarcoma. Recently, it has been proposed that EWSR1::FLI1 levels can fluctuate in Ewing sarcoma cells, giving rise to two cell populations. EWSR1::FLI1low cells present a migratory and invasive phenotype, while EWSR1::FLI1high cells are more proliferative. In this work, we described how the CD44 standard isoform (CD44s), a transmembrane protein involved in cell adhesion and migration, is overexpressed in the EWSR1::FLI1low phenotype. The functional characterization of CD44s (proliferation, clonogenicity, migration, and invasion ability) was performed in three doxycycline-inducible Ewing sarcoma cell models (A673, MHH-ES1, and CADO-ES1). As a result, CD44s expression reduced cell proliferation in all the cell lines tested without affecting clonogenicity. Additionally, CD44s increased cell migration in A673 and MHH-ES1, without effects in CADO-ES1. As hyaluronan is the main ligand of CD44s, its effect on migration ability was also assessed, showing that high molecular weight hyaluronic acid (HMW-HA) blocked cell migration while low molecular weight hyaluronic acid (LMW-HA) increased it. Invasion ability was correlated with CD44 expression in A673 and MHH-ES1 cell lines. CD44s, upregulated upon EWSR1::FLI1 knockdown, regulates cell migration and invasion in Ewing sarcoma cells.


Subject(s)
Sarcoma, Ewing , Humans , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Hyaluronic Acid , Cell Line, Tumor , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism
3.
Ann Hematol ; 100(8): 1995-2004, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33409621

ABSTRACT

SF3B1 is a highly mutated gene in myelodysplastic syndrome (MDS) patients, related to a specific subtype and parameters of good prognosis in MDS without excess blasts. More than 40% of MDS patients carry at least two myeloid-related gene mutations but little is known about the impact of concurrent mutations on the outcome of MDS patients. In applying next-generation sequencing (NGS) with a 117 myeloid gene custom panel, we analyzed the co-occurrence of SF3B1 with other mutations to reveal their clinical, biological, and prognostic implications in very low/low- and intermediate-risk MDS patients. Mutations in addition to those of SF3B1 were present in 80.4% of patients (median of 2 additional mutations/patient, range 0-5). The most frequently mutated genes were as follows: TET2 (39.2%), DNMT3A (25.5%), SRSF2 (10.8%), CDH23 (5.9%), and ASXL1, CUX1, and KMT2D (4.9% each). The presence of at least two mutations concomitant with that of SF3B1 had an adverse impact on survival compared with those with the SF3B1 mutation and fewer than two additional mutations (median of 54 vs. 87 months, respectively: p = 0.007). The co-occurrence of SF3B1 mutations with specific genes is also linked to a dismal prognosis: SRSF2 mutations were associated with shorter overall survival (OS) than SRSF2wt (median, 27 vs. 75 months, respectively; p = 0.001), concomitant IDH2 mutations (median OS, 11 [mut] vs. 75 [wt] months; p = 0.001), BCOR mutations (median OS, 11 [mut] vs. 71 [wt] months; p = 0.036), and NUP98 and STAG2 mutations (median OS, 27 and 11 vs. 71 months, respectively; p = 0.008 and p = 0.002). Mutations in CHIP genes (TET2, DNMT3A) did not significantly affect the clinical features or outcome. Our results suggest that a more comprehensive NGS study in low-risk MDS SF3B1mut patients is essential for a better prognostic evaluation.


Subject(s)
Myelodysplastic Syndromes/genetics , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Adult , Aged , Aged, 80 and over , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Dioxygenases , Female , Humans , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/diagnosis , Prognosis , Proto-Oncogene Proteins/genetics
4.
J Pers Med ; 10(4)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255984

ABSTRACT

The development of Next-Generation Sequencing (NGS) has provided useful diagnostic, prognostic, and therapeutic strategies for individualized management of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. Consequently, NGS is rapidly being established in clinical practice. However, the technology's complexity, bioinformatics analysis, and the different available options difficult a broad consensus between different laboratories in its daily routine introduction. This collaborative study among Spanish centers was aimed to assess the feasibility, pros, and cons of our customized panel and other commercial alternatives of NGS-targeted approaches. The custom panel was tested in three different sequencing centers. We used the same samples to assess other commercial panels (OncomineTM Childhood Cancer Research Assay; Archer®FusionPlex® ALL, and Human Comprehensive Cancer Panel GeneRead Panel v2®). Overall, the panels showed a good performance in different centers and platforms, but each NGS approach presented some issues, as well as pros and cons. Moreover, a previous consensus on the analysis and reporting following international guidelines would be preferable to improve the concordance in results among centers. Our study shows the challenges posed by NGS methodology and the need to consider several aspects of the chosen NGS-targeted approach and reach a consensus before implementing it in daily practice.

5.
Diagnostics (Basel) ; 10(7)2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32635531

ABSTRACT

The clonal basis of relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is complex and not fully understood. Next-generation sequencing (NGS), array comparative genomic hybridization (aCGH), and multiplex ligation-dependent probe amplification (MLPA) were carried out in matched diagnosis-relapse samples from 13 BCP-ALL patients to identify patterns of genetic evolution that could account for the phenotypic changes associated with disease relapse. The integrative genomic analysis of aCGH, MLPA and NGS revealed that 100% of the BCP-ALL patients showed at least one genetic alteration at diagnosis and relapse. In addition, there was a significant increase in the frequency of chromosomal lesions at the time of relapse (p = 0.019). MLPA and aCGH techniques showed that IKZF1 was the most frequently deleted gene. TP53 was the most frequently mutated gene at relapse. Two TP53 mutations were detected only at relapse, whereas the three others showed an increase in their mutational burden at relapse. Clonal evolution patterns were heterogeneous, involving the acquisition, loss and maintenance of lesions at relapse. Therefore, this study provides additional evidence that BCP-ALL is a genetically dynamic disease with distinct genetic profiles at diagnosis and relapse. Integrative NGS, aCGH and MLPA analysis enables better molecular characterization of the genetic profile in BCP-ALL patients during the evolution from diagnosis to relapse.

6.
J Hum Genet ; 65(2): 165-174, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31772335

ABSTRACT

Somatic mutational mosaicism is a common feature of monogenic genetic disorders, particularly in diseases such as retinoblastoma, with high rates of de novo mutations. The detection and quantification of mosaicism is particularly relevant in these diseases, since it has important implications for genetic counseling, patient management, and probably also on disease onset and progression. In order to assess the rate of somatic mosaicism (high- and low-level mosaicism) in sporadic retinoblastoma patients, we analyzed a cohort of 153 patients with sporadic retinoblastoma using ultra deep next-generation sequencing. High-level mosaicism was detected in 14 out of 100 (14%) bilateral patients and in 11 out of 29 (38%) unilateral patients in whom conventional Sanger sequencing identified a pathogenic mutation in blood DNA. In addition, low-level mosaicism was detected in 3 out of 16 (19%) unilateral patients in whom conventional screening was negative in blood DNA. Our results also reveal that mosaicism was associated to delayed retinoblastoma onset particularly in unilateral patients. Finally we compared the level of mosaicism in different tissues to identify the best DNA source to identify mosaicism in retinoblastoma patients. In light of these results we recommended analyzing the mosaic status in all retinoblastoma patients using accurate techniques such as next-generation sequencing, even in those cases in which conventional Sanger sequencing identified a pathogenic mutation in blood DNA. Our results suggest that a significant proportion of those cases are truly mosaics that could have been overlooked. This information should be taking into consideration in the management and genetic counseling of retinoblastoma patients and families.


Subject(s)
Mosaicism , Retinoblastoma/genetics , Cohort Studies , Genetic Counseling , Genotype , High-Throughput Nucleotide Sequencing , Humans , Mutation , Phenotype , Sensitivity and Specificity , Sequence Analysis, DNA
7.
Am J Hematol ; 92(9): E534-E541, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28612357

ABSTRACT

The International Prognostic Scoring System and its revised form (IPSS-R) are the most widely used indices for prognostic assessment of patients with myelodysplastic syndromes (MDS), but can only partially account for the observed variation in patient outcomes. This study aimed to evaluate the relative contribution of patient condition and mutational status in peripheral blood when added to the IPSS-R, for estimating overall survival and the risk of leukemic transformation in patients with MDS. A prospective cohort (2006-2015) of 200 consecutive patients with MDS were included in the study series and categorized according to the IPSS-R. Patients were further stratified according to patient condition (assessed using the multidimensional Lee index for older adults) and genetic mutations (peripheral blood samples screened using next-generation sequencing). The change in likelihood-ratio was tested in Cox models after adding individual covariates. The addition of the Lee index to the IPSS-R significantly improved prediction of overall survival [hazard ratio (HR) 3.02, 95% confidence interval (CI) 1.96-4.66, P < 0.001), and mutational analysis significantly improved prediction of leukemic evolution (HR 2.64, 1.56-4.46, P < 0.001). Non-leukemic death was strongly linked to patient condition (HR 2.71, 1.72-4.25, P < 0.001), but not to IPSS-R score (P = 0.35) or mutational status (P = 0.75). Adjustment for exposure to disease-modifying therapy, evaluated as a time-dependent covariate, had no effect on the proposed model's predictive ability. In conclusion, patient condition, assessed by the multidimensional Lee index and patient mutational status can improve the prediction of clinical outcomes of patients with MDS already stratified by IPSS-R.


Subject(s)
Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Survival Rate , Disease-Free Survival , Female , Follow-Up Studies , Humans , Male , Prospective Studies , Spain/epidemiology
8.
Br J Cancer ; 117(2): 256-265, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28557976

ABSTRACT

BACKGROUND: In B-cell precursor acute lymphoblastic leukaemia (B-ALL), the identification of additional genetic alterations associated with poor prognosis is still of importance. We determined the frequency and prognostic impact of somatic mutations in children and adult cases with B-ALL treated with Spanish PETHEMA and SEHOP protocols. METHODS: Mutational status of hotspot regions of TP53, JAK2, PAX5, LEF1, CRLF2 and IL7R genes was determined by next-generation deep sequencing in 340 B-ALL patients (211 children and 129 adults). The associations between mutation status and clinicopathological features at the time of diagnosis, treatment outcome and survival were assessed. Univariate and multivariate survival analyses were performed to identify independent prognostic factors associated with overall survival (OS), event-free survival (EFS) and relapse rate (RR). RESULTS: A mutation rate of 12.4% was identified. The frequency of adult mutations was higher (20.2% vs 7.6%, P=0.001). TP53 was the most frequently mutated gene (4.1%), followed by JAK2 (3.8%), CRLF2 (2.9%), PAX5 (2.4%), LEF1 (0.6%) and IL7R (0.3%). All mutations were observed in B-ALL without ETV6-RUNX1 (P=0.047) or BCR-ABL1 fusions (P<0.0001). In children, TP53mut was associated with lower OS (5-year OS: 50% vs 86%, P=0.002) and EFS rates (5-year EFS: 50% vs 78.3%, P=0.009) and higher RR (5-year RR: 33.3% vs 18.6% P=0.037), and was independently associated with higher RR (hazard ratio (HR)=4.5; P=0.04). In adults, TP53mut was associated with a lower OS (5-year OS: 0% vs 43.3%, P=0.019) and a higher RR (5-year RR: 100% vs 61.4%, P=0.029), whereas JAK2mut was associated with a lower EFS (5-year EFS: 0% vs 30.6%, P=0.035) and a higher RR (5-year RR: 100% vs 60.4%, P=0.002). TP53mut was an independent risk factor for shorter OS (HR=2.3; P=0.035) and, together with JAK2mut, also were independent markers of poor prognosis for RR (TP53mut: HR=5.9; P=0.027 and JAK2mut: HR=5.6; P=0.036). CONCLUSIONS: TP53mut and JAK2mut are potential biomarkers associated with poor prognosis in B-ALL patients.


Subject(s)
Biomarkers, Tumor/genetics , Janus Kinase 2/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/pathology , Child , Child, Preschool , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Receptors, Cytokine/biosynthesis , Treatment Outcome
9.
J Hematol Oncol ; 10(1): 83, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28399885

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL) is a highly genetically heterogeneous disease. Although CLL has been traditionally considered as a mature B cell leukemia, few independent studies have shown that the genetic alterations may appear in CD34+ hematopoietic progenitors. However, the presence of both chromosomal aberrations and gene mutations in CD34+ cells from the same patients has not been explored. METHODS: Amplicon-based deep next-generation sequencing (NGS) studies were carried out in magnetically activated-cell-sorting separated CD19+ mature B lymphocytes and CD34+ hematopoietic progenitors (n = 56) to study the mutational status of TP53, NOTCH1, SF3B1, FBXW7, MYD88, and XPO1 genes. In addition, ultra-deep NGS was performed in a subset of seven patients to determine the presence of mutations in flow-sorted CD34+CD19- early hematopoietic progenitors. Fluorescence in situ hybridization (FISH) studies were performed in the CD34+ cells from nine patients of the cohort to examine the presence of cytogenetic abnormalities. RESULTS: NGS studies revealed a total of 28 mutations in 24 CLL patients. Interestingly, 15 of them also showed the same mutations in their corresponding whole population of CD34+ progenitors. The majority of NOTCH1 (7/9) and XPO1 (4/4) mutations presented a similar mutational burden in both cell fractions; by contrast, mutations of TP53 (2/2), FBXW7 (2/2), and SF3B1 (3/4) showed lower mutational allele frequencies, or even none, in the CD34+ cells compared with the CD19+ population. Ultra-deep NGS confirmed the presence of FBXW7, MYD88, NOTCH1, and XPO1 mutations in the subpopulation of CD34+CD19- early hematopoietic progenitors (6/7). Furthermore, FISH studies showed the presence of 11q and 13q deletions (2/2 and 3/5, respectively) in CD34+ progenitors but the absence of IGH cytogenetic alterations (0/2) in the CD34+ cells. Combining all the results from NGS and FISH, a model of the appearance and expansion of genetic alterations in CLL was derived, suggesting that most of the genetic events appear on the hematopoietic progenitors, although these mutations could induce the beginning of tumoral cell expansion at different stage of B cell differentiation. CONCLUSIONS: Our study showed the presence of both gene mutations and chromosomal abnormalities in early hematopoietic progenitor cells from CLL patients.


Subject(s)
Chromosome Aberrations , Hematopoietic Stem Cells/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mutation , Antigens, CD19 , Antigens, CD34 , High-Throughput Nucleotide Sequencing/methods , Humans , In Situ Hybridization, Fluorescence/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics
10.
Leuk Res ; 56: 82-87, 2017 05.
Article in English | MEDLINE | ID: mdl-28222336

ABSTRACT

Our study aimed to analyze the presence of mutations in SF3B1 and other spliceosome-related genes in myelodysplastic syndromes with ringed sideroblasts (MDS-RS) by combining conventional Sanger and next-generation sequencing (NGS) methods, and to determine the feasibility of this approach in a clinical setting. 122 bone marrow samples from MDS-RS patients were studied. Initially, exons 14 and 15 of the SF3B1 gene were analyzed by Sanger sequencing. Secondly, they were studied by NGS covering besides SF3B1, SRSF2, U2AF1 and ZRSR2 genes. An 86% of all patients showed mutations in the SF3B1 gene. Six of them, which were not identifiable by conventional sequencing in the first diagnostic step, were revealed by NGS. In addition, 19.5% of cases showed mutations in other splicing genes: SRSF2, U2AF1, and ZRSR2. Furthermore, 8.7% of patients had two mutations in SF3B1, SF3B1 and SRSF2, and SF3B1 and U2AF1, while 5.7% showed no mutations in the four spliceosome-related genes analyzed. The combined use of conventional Sanger and NGS allows the identification of mutations in spliceosome-related genes in almost all MDS patients with RS. This two-step approach is affordable and could be useful as a complementary technique in cases with an unclear diagnosis.


Subject(s)
Anemia, Sideroblastic/genetics , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Spliceosomes/genetics , Anemia, Sideroblastic/diagnosis , Bone Marrow , Humans , Methods , Mutation , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Sequence Analysis, DNA , Serine-Arginine Splicing Factors/genetics , Splicing Factor U2AF/genetics
12.
Eur J Haematol ; 98(2): 142-148, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27717146

ABSTRACT

The presence of chromosomal gains other than trisomy 12 in chronic lymphocytic leukaemia (CLL) is unusual. However, some patients may show gains on several chromosomes simultaneously suggesting a hyperdiploid karyotype. OBJECTIVE: The objective of this study was to analyse by FISH the frequency and prognostic impact of hyperdiploidy in CLL. METHOD: A review of 1359 consecutive cases diagnosed with CLL referred for FISH analysis to a unique institution was carried out. Hyperdiploidy was considered when a gain of at least three of the five FISH probes used was observed. RESULTS: Seven cases (0.51%) with hyperdiploidy were found, confirming that it is a rare event in this disease. Although most patients presented with early Binet stages at diagnosis, six of seven (86%) shortly progressed. The median of time to the first therapy (TTFT) and overall survival (OS) for the patients with hyperdiploidy were short (1.4 months and 20 months, respectively). Moreover, comparing them with a control group of patients (non-hyperdiploid) with completed follow-up data, TTFT and OS of the patients with hyperdiploidy were significantly shorter than the control group. CONCLUSION: The presence of hyperdiploidy is uncommon and probably associated with poor prognostic markers in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Polyploidy , Aged , Biomarkers , Case-Control Studies , Chromosome Aberrations , Female , Humans , Immunophenotyping , In Situ Hybridization, Fluorescence , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Middle Aged , Mutation , Neoplasm Staging , Prognosis , Retrospective Studies , Time-to-Treatment , Treatment Outcome , Tumor Suppressor Protein p53/genetics
13.
PLoS One ; 11(10): e0164370, 2016.
Article in English | MEDLINE | ID: mdl-27741277

ABSTRACT

To explore novel genetic abnormalities occurring in myelodysplastic syndromes (MDS) through an integrative study combining array-based comparative genomic hybridization (aCGH) and next-generation sequencing (NGS) in a series of MDS and MDS/myeloproliferative neoplasms (MPN) patients. 301 patients diagnosed with MDS (n = 240) or MDS/MPN (n = 61) were studied at the time of diagnosis. A genome-wide analysis of DNA copy number abnormalities was performed. In addition, a mutational analysis of DNMT3A, TET2, RUNX1, TP53 and BCOR genes was performed by NGS in selected cases. 285 abnormalities were identified in 71 patients (23.6%). Three high-risk MDS cases (1.2%) displayed chromothripsis involving exclusively chromosome 13 and affecting some cancer genes: FLT3, BRCA2 and RB1. All three cases carried TP53 mutations as revealed by NGS. Moreover, in the whole series, the integrative analysis of aCGH and NGS enabled the identification of cryptic recurrent deletions in 2p23.3 (DNMT3A; n = 2.8%), 4q24 (TET2; n = 10%) 17p13 (TP53; n = 8.5%), 21q22 (RUNX1; n = 7%), and Xp11.4 (BCOR; n = 2.8%), while mutations in the non-deleted allele where found only in DNMT3A (n = 1), TET2 (n = 3), and TP53 (n = 4). These cryptic abnormalities were detected mainly in patients with normal (45%) or non-informative (15%) karyotype by conventional cytogenetics, except for those with TP53 deletion and mutation (15%), which had a complex karyotype. In addition to well-known copy number defects, the presence of chromothripsis involving chromosome 13 was a novel recurrent change in high-risk MDS patients. Array CGH analysis revealed the presence of cryptic abnormalities in genomic regions where MDS-related genes, such as TET2, DNMT3A, RUNX1 and BCOR, are located.


Subject(s)
Chromosome Aberrations , Myelodysplastic Syndromes/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Chromosomes, Human, Pair 13 , Comparative Genomic Hybridization , Core Binding Factor Alpha 2 Subunit/genetics , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Copy Number Variations , DNA Methyltransferase 3A , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Dioxygenases , Female , High-Throughput Nucleotide Sequencing , Humans , Karyotype , Male , Middle Aged , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , Proto-Oncogene Proteins/genetics , Recurrence , Risk , Tumor Suppressor Protein p53/genetics , Young Adult
14.
Oncotarget ; 7(21): 30492-503, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27127180

ABSTRACT

The biological and molecular events that underlie bone marrow fibrosis in patients with myelodysplastic syndromes are poorly understood, and its prognostic role in the era of the Revised International Prognostic Scoring System (IPSS-R) is not yet fully determined. We have evaluated the clinical and biological events that underlie bone marrow fibrotic changes, as well as its prognostic role, in a well-characterized prospective patient cohort (n=77) of primary MDS patients. The degree of marrow fibrosis was linked to parameters of erythropoietic failure, marrow cellularity, p53 protein accumulation, WT1 gene expression, and serum levels of CXCL9 and CXCL10, but not to other covariates including the IPSS-R score. The presence of bone marrow fibrosis grade 2 or higher was associated with the presence of mutations in cohesin complex genes (31.5% vs. 5.4%, p=0.006). By contrast, mutations in CALR, JAK2, PDGFRA, PDGFRB,and TP53 were very rare. Survival analysis showed that marrow fibrosis grade 2 or higher was a relevant significant predictor for of overall survival, and independent of age, performance status, and IPSS-R score in multivariate analysis.


Subject(s)
Bone Marrow/metabolism , DNA Mutational Analysis/methods , Mutation , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Bone Marrow/pathology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Female , Fibrosis , Humans , Male , Middle Aged , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Prognosis , Prospective Studies , Survival Analysis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism
15.
Leuk Res ; 46: 30-6, 2016 07.
Article in English | MEDLINE | ID: mdl-27111859

ABSTRACT

Deletion 13q (13q-) is the most common cytogenetic aberration in chronic lymphocytic leukemia (CLL) and is associated with the most favorable prognosis as the sole cytogenetic abnormality. However, it is heterogeneous whereby CLL patients with higher percentages of 13q- cells (13q-H) have a more aggressive clinical course and a distinct gene expression profile. The microRNA (miRNA) expression profile of CLL gives additional biological and prognostic information, but its expression in 13q- CLL has not been examined in detail. The miRNA expression of clonal B cell lymphocytes (CD19+ cells) of 38 CLL patients and normal B cells of six healthy donors was analyzed. CLL patients with higher percentages of 13q- cells (≥80%) showed a different level of miRNA expression from patients with lower percentages (<80%). Interestingly, miR-143 was downregulated and miR-155 was overexpressed in 13q-H. This deregulation affected important validated target genes involved in apoptosis (BCL2, MDM2, TP53INP1) and proliferation (KRAS, PI3K-AKT signaling), that could lead to decreased apoptosis and increased proliferation in 13q-H patients. This study provides new evidence about the heterogeneity of the 13q deletion in CLL patients, showing that miRNA regulation could be involved in several significant pathways deregulated in CLL patients with a high number of losses in 13q.


Subject(s)
Chromosome Disorders/genetics , Gene Expression Profiling , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Apoptosis/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Proliferation/genetics , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human, Pair 13/genetics , Genetic Variation , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Prognosis
16.
PLoS One ; 11(2): e0148972, 2016.
Article in English | MEDLINE | ID: mdl-26872047

ABSTRACT

UNLABELLED: Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL) is still a challenge. AIMS: To characterize the presence of additional DNA copy number alterations (CNAs) in children and adults with ALL by whole-genome oligonucleotide array (aCGH) analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults). The NimbleGen CGH 12x135K array (Roche) was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q). CNAs were associated with age, phenotype, genetic subtype and overall survival (OS). In the whole cohort of children, the losses on 14q32.33 (p = 0.019) and 15q13.2 (p = 0.04) were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001) and Xp21.1 (p = 0.029), and the loss of 17p (p = 0.014) were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.


Subject(s)
Biomarkers, Tumor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Comparative Genomic Hybridization , DNA Copy Number Variations , Female , Gene Dosage , Gene Frequency , Genetic Markers , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Proportional Hazards Models , Treatment Outcome , Young Adult
17.
Br J Haematol ; 172(3): 428-38, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26567765

ABSTRACT

The introduction of Rituximab has improved the outcome and survival rates of Burkitt lymphoma (BL). However, early relapse and refractoriness are current limitations of BL treatment and new biological factors affecting the outcome of these patients have not been explored. This study aimed to identify the presence of genomic changes that could predict the response to new therapies in BL. Forty adolescent and adult BL patients treated with the Dose-Intensive Chemotherapy Including Rituximab (Burkimab) protocol (Spanish Programme for the Study and Treatment of Haematological Malignancies; PETHEMA) were analysed using array-based comparative genomic hybridization (CGH). In addition, the presence of TP53, TCF3 (E2A), ID3 and GNA13 mutations was assessed by next-generation sequencing (NGS). Ninety-seven per cent of the patients harboured genomic imbalances. Losses on 11q, 13q, 15q or 17p were associated with a poor response to Burkimab therapy (P = 0·038), shorter progression-free survival (PFS; P = 0·007) and overall survival (OS; P = 0·009). The integrative analysis of array-CGH and NGS showed that 26·3% (5/19) and 36·8% (7/19) of patients carried alterations in the TP53 and TCF3 genes, respectively. TP53 alterations were associated with shorter PFS (P = 0·011) while TCF3 alterations were associated with shorter OS (P = 0·032). Genetic studies could be used for risk stratification of BL patients treated with the Burkimab protocol.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , Chromosome Aberrations , Adolescent , Adult , Aged , Comparative Genomic Hybridization/methods , Female , Genome , High-Throughput Nucleotide Sequencing/methods , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Rituximab/administration & dosage , Treatment Outcome , Young Adult
18.
PLoS One ; 10(11): e0143073, 2015.
Article in English | MEDLINE | ID: mdl-26630574

ABSTRACT

To analyze the impact of the 11q deleted (11q-) cells in CLL patients on the time to first therapy (TFT) and overall survival (OS), 2,493 patients with CLL were studied. 242 patients (9.7%) had 11q-. Fluorescence in situ hybridization (FISH) studies showed a threshold of 40% of deleted cells to be optimal for showing that clinical differences in terms of TFT and OS within 11q- CLLs. In patients with ≥40% of losses in 11q (11q-H) (74%), the median TFT was 19 months compared with 44 months in CLL patients with <40% del(11q) (11q-L) (P<0.0001). In the multivariate analysis, only the presence of 11q-L, mutated IGHV status, early Binet stage and absence of extended lymphadenopathy were associated with longer TFT. Patients with 11q-H had an OS of 90 months, while in the 11q-L group the OS was not reached (P = 0.008). The absence of splenomegaly (P = 0.02), low LDH (P = 0.018) or ß2M (P = 0.006), and the presence of 11q-L (P = 0.003) were associated with a longer OS. In addition, to detect the presence of mutations in the ATM, TP53, NOTCH1, SF3B1, MYD88, FBXW7, XPO1 and BIRC3 genes, a select cohort of CLL patients with losses in 11q was sequenced by next-generation sequencing of amplicons. Eighty % of CLLs with 11q- showed mutations and fewer patients with low frequencies of 11q- had mutations among genes examined (50% vs 94.1%, P = 0.023). In summary, CLL patients with <40% of 11q- had a long TFT and OS that could be associated with the presence of fewer mutated genes.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 11 , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Neoplasm Proteins/genetics , Adult , Aged , Aged, 80 and over , Female , Gene Expression , High-Throughput Nucleotide Sequencing , Humans , Immunoglobulin Heavy Chains/genetics , In Situ Hybridization, Fluorescence , Karyotype , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Neoplasm Proteins/immunology , Prognosis , Retrospective Studies , Survival Analysis
19.
Eur J Haematol ; 93(5): 422-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24813417

ABSTRACT

To assess the presence of genetic imbalances in patients with myeloproliferative neoplasms (MPNs), 38 patients with chronic eosinophilia were studied by array comparative genomic hybridization (aCGH): seven had chronic myelogenous leukaemia (CML), BCR-ABL1 positive, nine patients had myeloproliferative neoplasia Ph- (MPN-Ph-), three had a myeloid neoplasm associated with a PDGFRA rearrangement, and the remaining two cases were Lymphoproliferative T neoplasms associated with eosinophilia. In addition, 17 patients had a secondary eosinophilia and were used as controls. Eosinophilic enrichment was carried out in all cases. Genomic imbalances were found in 76% of all MPN patients. Losses on 20q were the most frequent genetic abnormality in MPNs (32%), affected the three types of MPN studied. This study also found losses at 11q13.3 in 26% of patients with MPN-Ph- and in 19p13.11 in two of the three patients with an MPN associated with a PDGFRA rearrangement. In addition, 29% of patients with CML had losses on 8q24. In summary, aCGH revealed clonality in eosinophils in most MPNs, suggesting that it could be a useful technique for defining clonality in these diseases. The presence of genetic losses in new regions could provide new insights into the knowledge of these MPN associated with eosinophilia.


Subject(s)
Chromosome Aberrations , Eosinophilia/genetics , Eosinophils/metabolism , Genome , Hematologic Neoplasms/genetics , Myeloproliferative Disorders/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Chromosomes, Human, Pair 11/chemistry , Chromosomes, Human, Pair 19/chemistry , Chromosomes, Human, Pair 20/chemistry , Chromosomes, Human, Pair 8/chemistry , Chronic Disease , Clone Cells , Comparative Genomic Hybridization , Eosinophilia/diagnosis , Eosinophilia/pathology , Eosinophils/pathology , Female , Fusion Proteins, bcr-abl/genetics , Genomic Instability , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/pathology , Humans , Male , Middle Aged , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/pathology , Receptor, Platelet-Derived Growth Factor alpha/genetics
20.
Methods Mol Biol ; 973: 121-45, 2013.
Article in English | MEDLINE | ID: mdl-23412787

ABSTRACT

BAC array-CGH is a powerful method to identify DNA copy number changes (gains, amplifications and deletions) on a genome-wide scale, and to map these changes to genomic sequence. It is based on the analysis of genomic DNA isolated from test and reference cell populations, the differential labelling with fluorescent dyes and the co-hybridization with a genomic array. BAC array-CGH has proven to be a specific, sensitive, and reliable technique, with considerable advantages compared to other methods used for the analysis of DNA copy number changes. The application of genome scanning technologies and the recent advances in bioinformatics tools that enable us to perform a robust and highly sensitive analysis of array-CGH data, useful not only for genome scanning of tumor cells but also in the identification of novel cancer related genes, oncogenes and suppressor genes. Cytogenetic analysis provides essential information for diagnosis and prognosis in patients with hematologic malignancies such as lymphomas. However, the chromosomal interpretation in non-Hodgkin lymphoma (NHL) is sometimes inconclusive. Copy number aberrations identified by BAC array-CGH analyses could be a complementary methodology to chromosomal analysis. In NHL the genomic imbalances might have a prognostic rather than a diagnostic value. In fact, the diagnosis of NHL is based on pathological and molecular cytogenetics data. Furthermore genetic variations and their association with specific types of lymphoma development, and elucidation of the variable genetic pathways leading to lymphoma development, are important directions for future cancer research. Array-CGH, along with FISH and PCR, will be used for routine diagnostic purposes in near future.


Subject(s)
Comparative Genomic Hybridization/methods , Lymphoma, Large B-Cell, Diffuse/genetics , Adult , Aged , Chromosome Aberrations , Chromosomes, Artificial, Bacterial/genetics , DNA/genetics , DNA/isolation & purification , Female , Gene Dosage , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Male , Middle Aged , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...