Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Curr Res Toxicol ; 6: 100173, 2024.
Article in English | MEDLINE | ID: mdl-38826685

ABSTRACT

In recent decades, industrialization, intensive agriculture, and urban development have severely impacted marine environments, compromising the health of aquatic and terrestrial organisms. Inadequate disposal results in hundreds of tons of plastic products released annually into the environment, which degrade into microplastics (MPs), posing health risks due to their ability to biomagnify and bioaccumulate. Among these, polystyrene MPs (PS-MPs) are significant pollutants in marine ecosystems, widely studied for their reproductive toxicological effects. This research aimed to evaluate the reproductive cytotoxic and genotoxic effects of PS-MPs on sea urchin (Paracentrotus lividus) spermatozoa in vitro. Results showed that PS-MPs significantly reduced sperm viability and motility without altering morphology, and induced sperm DNA fragmentation mediated by reactive oxygen species production. Furthermore, head-to-head agglutination of the spermatozoa was observed exclusively in the sample treated with the plastic agents, indicating the ability of microplastics to adhere to the surface of sperm cells and form aggregates with microplastics on other sperm cells, thereby impeding movement and reducing reproductive potential. These findings suggest that PS-MPs can adversely affect the quality of sea urchin sperm, potentially impacting reproductive events.

2.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790168

ABSTRACT

Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.


Subject(s)
Biomarkers , Infertility, Male , Oxidative Stress , Reactive Oxygen Species , Male , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/diagnosis , Biomarkers/metabolism , Reactive Oxygen Species/metabolism , Lipid Peroxidation/genetics , Spermatozoa/metabolism , DNA Damage , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Spermatogenesis/genetics
3.
Front Biosci (Landmark Ed) ; 29(2): 51, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38420825

ABSTRACT

BACKGROUND: Ribosome inactivating proteins (RIPs) are N-glycosylases found in various plants that are able to specifically and irreversibly inhibit protein translation, thereby leading to cell death. Their cytotoxic properties have attracted attention in the medical field in the context of developing new anticancer therapies. Quinoin is a novel toxic enzyme obtained from quinoa seeds and classified as a type 1 RIP (Chenopodium quinoa Willd.). Recently, quinoin was found to be cytotoxic to normal fibroblasts and keratinocytes in vitro, as well as to several tumor cell lines. METHODS: The aim of this study was to evaluate the in vitro and in vivo genotoxicity of quinoin in a zebrafish model. We evaluated its ability to induce DNA fragmentation, genomic instability, and reactive oxygen species (ROS) generation by means of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) reaction, randomly amplified polymorphic DNA (RAPD) Polymerase Chain Reaction (PCR) technique, and dichlorofluorescine (DCF) assay, respectively. RESULTS: Quinoin was found to cause genomic damage in zebrafish, as shown by DNA fragmentation, polymorphic variations leading to genomic instability, and oxidative stress. Interestingly, longer quinoin treatment caused less damage than shorter treatments. CONCLUSIONS: This study demonstrated ROS-mediated genotoxicity of quinoin toward the zebrafish genome. The reduced damage observed after longer quinoin treatment could indicate the activation of detoxification mechanisms, activation of repair mechanisms, or the loss of protein activity due to enzymatic digestion. In order to clarify the genotoxic actions of quinoin, further investigations of the response pathways to DNA damage are needed. Overall, the ability of quinoin to cause breaks and instability in DNA, together with its clear cytotoxicity, make it an interesting candidate for the development of new drugs for cancer treatment.


Subject(s)
Chenopodium quinoa , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , Chenopodium quinoa/metabolism , Random Amplified Polymorphic DNA Technique , Saporins/metabolism , DNA Damage , Seeds/genetics , Seeds/metabolism , Genomic Instability , DNA/metabolism
4.
World J Mens Health ; 42(1): 39-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37382282

ABSTRACT

Artificial intelligence (AI) in medicine has gained a lot of momentum in the last decades and has been applied to various fields of medicine. Advances in computer science, medical informatics, robotics, and the need for personalized medicine have facilitated the role of AI in modern healthcare. Similarly, as in other fields, AI applications, such as machine learning, artificial neural networks, and deep learning, have shown great potential in andrology and reproductive medicine. AI-based tools are poised to become valuable assets with abilities to support and aid in diagnosing and treating male infertility, and in improving the accuracy of patient care. These automated, AI-based predictions may offer consistency and efficiency in terms of time and cost in infertility research and clinical management. In andrology and reproductive medicine, AI has been used for objective sperm, oocyte, and embryo selection, prediction of surgical outcomes, cost-effective assessment, development of robotic surgery, and clinical decision-making systems. In the future, better integration and implementation of AI into medicine will undoubtedly lead to pioneering evidence-based breakthroughs and the reshaping of andrology and reproductive medicine.

5.
Biomolecules ; 13(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38136630

ABSTRACT

Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.


Subject(s)
Semen , Spermatozoa , Male , Humans , Epigenesis, Genetic , Phenotype , Reproduction/genetics , Disease Susceptibility
7.
Nanomaterials (Basel) ; 13(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446480

ABSTRACT

Novel silver nanoparticles were synthesized based on a simple and non-toxic method by applying the green synthesis technique, using, for the first time, the aqueous extract of an extremophile plant belonging to the Achillea maritima subsp. maritima species. AgNP characterization was performed via UV-Visible, front-face fluorescence spectroscopy, and FTIR and XRD analyses. AgNP formation was immediately confirmed by a color change from yellow to brown and by a surface plasmon resonance peak using UV-Vis spectroscopy at 420 nm. The biosynthesized AgNPs were spherical in shape with a size ranging from approximatively 14.13 to 21.26 nm. The presented silver nanoparticles exhibited strong antioxidant activity following a DPPH assay compared to ascorbic acid, with IC50 values of about 0.089 µg/mL and 22.54 µg/mL, respectively. The AgNPs showed higher antidiabetic capacities than acarbose, by inhibiting both alpha amylase and alpha glucosidase. The silver nanoparticles could affect various bacterial mechanisms of virulence, such as EPS production, biofilm formation and DNA damage. The silver nanoparticles showed no lysozyme activity on the cell walls of Gram-positive bacteria. The AgNPs also had a strong inhibitory effect on the Candida albicans virulence factor (extracellular enzymes, biofilm formation). The microscopic observation showed abnormal morphogenesis and agglomeration of Candida albicans exposed to AgNPs. The AgNPs showed no cytotoxic effect on human cells in an MTT assay. The use of novel silver nanoparticles is encouraged in the formulation of natural antimicrobial and antidiabetic agents.

8.
Biomolecules ; 13(5)2023 04 23.
Article in English | MEDLINE | ID: mdl-37238599

ABSTRACT

Chromosomal polymorphisms are structural variations in chromosomes that define the genomic variance of a species. These alterations are recurrent in the general population, and some of them appear to be more recurrent in the infertile population. Human chromosome 9 is highly heteromorphic, and how its rearrangement affects male fertility remains to be fully investigated. In this study, we aimed to investigate the association between the polymorphic rearrangements of chromosome 9 and male infertility via an Italian cohort of male infertile patients. Cytogenetic analysis was carried out, along with Y microdeletion screening, semen analysis, fluorescence in situ hybridization, and TUNEL assays using spermatic cells. Chromosome 9 rearrangements were observed in six patients: three of them showed a pericentric inversion, while the others showed a polymorphic heterochromatin variant 9qh. Of these, four patients exhibited oligozoospermia associated with teratozoospermia, along with a percentage of aneuploidy in the sperm of above 9%, in particular, an increase in XY disomy. Additionally, high values for sperm DNA fragmentation (≥30%) were observed in two patients. None of them had microdeletions to the AZF loci on chromosome Y. Our results suggest that polymorphic rearrangements of chromosome 9 might be associated with abnormalities in sperm quality due to incorrect spermatogenesis regulation.


Subject(s)
Infertility, Male , Semen , Humans , Male , In Situ Hybridization, Fluorescence , Infertility, Male/genetics , Spermatozoa/physiology , Spermatogenesis/genetics , Chromosomes, Human , Chromosomes, Human, Pair 9
9.
Eur J Gastroenterol Hepatol ; 35(7): 734-741, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37115974

ABSTRACT

BACKGROUND: Portal vein tumor thrombosis (PVTT) is a common complication of hepatocellular carcinoma and is one of the most negative prognostic factors. The management of patients with PVTT is challenging. The aim of the study was to develop a score predictive of tumor thrombosis. METHODS: Data from a large cohort of 2243 hepatocellular carcinoma patients (all stages) recorded in the Progetto Epatocarcinoma Campania (January 2013-April 2021) database were analyzed. To construct the score, univariate generalized estimated equation models, the bootstrap approach for internal validation, and a regression coefficient-based scoring system were used. RESULTS: PVTT (any location) was found in 14.4% of cases and was related to shorter survival. Males, younger patients, and symptomatic cases were more prevalent among the PVTT group. At multivariate analysis, size ≥5 cm, massive or infiltrative hepatocellular carcinoma growth, and alpha-fetoprotein ≥400 ng/mL were significantly associated with PVTT. A risk prediction score of PVTT based on eight variables was developed. Using a continuous score, the risk was associated with an odds ratio (OR) of 1.30 (1.27-1.34; P  < 0.001). Considering a dichotomous score >8 versus a score ≤8 the OR for PVTT was 11.33 (8.55-15.00; P  < 0.001). CONCLUSION: The risk score for PVTT might be useful for clinicians to optimize hepatocellular carcinoma management by picking out patients with more aggressive cancers and higher mortality rates. Prospective validation of the score is needed before its application in daily clinical practice.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Thrombosis , Venous Thrombosis , Male , Humans , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/complications , Liver Neoplasms/diagnosis , Portal Vein/pathology , Venous Thrombosis/etiology , Venous Thrombosis/complications , Thrombosis/complications , Thrombosis/pathology , Risk Factors , Retrospective Studies , Treatment Outcome
10.
World J Mens Health ; 41(4): 809-847, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37118965

ABSTRACT

PURPOSE: Sperm DNA fragmentation (SDF) has been associated with male infertility and poor outcomes of assisted reproductive technology (ART). The purpose of this study was to investigate global practices related to the management of elevated SDF in infertile men, summarize the relevant professional society recommendations, and provide expert recommendations for managing this condition. MATERIALS AND METHODS: An online global survey on clinical practices related to SDF was disseminated to reproductive clinicians, according to the CHERRIES checklist criteria. Management protocols for various conditions associated with SDF were captured and compared to the relevant recommendations in professional society guidelines and the appropriate available evidence. Expert recommendations and consensus on the management of infertile men with elevated SDF were then formulated and adapted using the Delphi method. RESULTS: A total of 436 experts from 55 different countries submitted responses. As an initial approach, 79.1% of reproductive experts recommend lifestyle modifications for infertile men with elevated SDF, and 76.9% prescribe empiric antioxidants. Regarding antioxidant duration, 39.3% recommend 4-6 months and 38.1% recommend 3 months. For men with unexplained or idiopathic infertility, and couples experiencing recurrent miscarriages associated with elevated SDF, most respondents refer to ART 6 months after failure of conservative and empiric medical management. Infertile men with clinical varicocele, normal conventional semen parameters, and elevated SDF are offered varicocele repair immediately after diagnosis by 31.4%, and after failure of antioxidants and conservative measures by 40.9%. Sperm selection techniques and testicular sperm extraction are also management options for couples undergoing ART. For most questions, heterogenous practices were demonstrated. CONCLUSIONS: This paper presents the results of a large global survey on the management of infertile men with elevated SDF and reveals a lack of consensus among clinicians. Furthermore, it demonstrates the scarcity of professional society guidelines in this regard and attempts to highlight the relevant evidence. Expert recommendations are proposed to help guide clinicians.

11.
Molecules ; 28(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36838900

ABSTRACT

The present work aimed to develop rapid approach monitoring using a simple selective method based on a positive hemolysis test, oil spreading activity and emulsification index determinations. It is the first to describe production of biosurfactants (BS) by the endophytic Pantoea alhagi species. Results indicated that the new BS evidenced an E24 emulsification index of 82%. Fourier-transform infrared (FTIR) results mentioned that the described BS belong to the glycolipid family. Fatty acid profiles showed the predominance of methyl 2-hyroxydodecanoate in the cell membrane (67.00%) and methyl 14-methylhexadecanoate (12.05%). The major fatty acid in the BS was oleic acid (76.26%), followed by methyl 12-methyltetradecanoate (10.93%). Markedly, the BS produced by the Pantoea alhagi species exhibited antimicrobial and anti-biofilm activities against tested human pathogens. With superior antibacterial activity against Escherchia coli and Staphylococcus aureus, a high antifungal effect was given against Fusarium sp. with a diameter of zone of inhibition of 29.5 mm, 36 mm and 31 mm, obtained by BS dissolved in methanol extract. The DPPH assay indicated that the BS (2 mg/mL) showed a higher antioxidant activity (78.07 inhibition percentage). The new BS exhibited specific characteristics, encouraging their use in various industrial applications.


Subject(s)
Anti-Infective Agents , Antioxidants , Humans , Antioxidants/pharmacology , Biofilms , Anti-Infective Agents/pharmacology , Fatty Acids/pharmacology
12.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499078

ABSTRACT

It is known that an altered redox balance interferes with normal spermatic functions. Exposure to genotoxic substances capable of producing oxidative stress (OS) can cause infertility in humans. The use of antioxidants to reduce oxidative stress contributes to the improvement in reproductive function. This study focused on an antigenotoxic evaluation of ellagic acid (EA) and ascorbic acid (AA) in combination against benzene genotoxic action on human spermatozoa in vitro. In addition to the evaluation of sperm parameters, damage in sperm genetic material and intracellular ROS quantification were assessed after AA, EA and benzene co-exposure using the TUNEL technique and DCF assay. The results showed that the combination of the two antioxidants generates a greater time-dependent antigenotoxic action, reducing both the sperm DNA fragmentation index and the oxidative stress. The genoprotective effect of AA and EA association in sperm cells lays the foundations for a more in-depth clinical study on the use of antioxidants as a therapy for male infertility.


Subject(s)
Ellagic Acid , Infertility, Male , Male , Humans , Ellagic Acid/pharmacology , Ellagic Acid/metabolism , Benzene/pharmacology , Reactive Oxygen Species/metabolism , Semen , Spermatozoa/metabolism , Oxidative Stress , Infertility, Male/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , DNA Damage , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Sperm Motility
13.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35564294

ABSTRACT

Candida and dermatophyte infections are difficult to treat due to increasing antifungal drugs resistance such as fluconazole, as well as the emergence of multi-resistance in clinical bacteria. Here, we first synthesized silver nanoparticles using aqueous fruit extracts from Scabiosa atropurpurea subsp. maritima (L.). The characterization of the AgNPs by means of UV, XRD, FTIR, and TEM showed that the AgNPs had a uniform spherical shape with average sizes of 40-50 nm. The biosynthesized AgNPs showed high antioxidant activity when investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The AgNPs displayed strong antibacterial potential expressed by the maximum zone inhibition and the lowest MIC and MBC values. The AgNPs revealed a significant antifungal effect against the growth and biofilm of Candida species. In fact, the AgNPs were efficient against Trichophyton rubrum, Trichophyton interdigitale, and Microsporum canis. The antifungal mechanisms of action of the AgNPs seem to be due to the disruption of membrane integrity and a reduction in virulence factors (biofilm and hyphae formation and a reduction in germination). Finally, the silver nanoparticles also showed important cytotoxic activity against the human multiple myeloma U266 cell line and the human breast cancer cell line MDA-MB-231. Therefore, we describe new silver nanoparticles with promising biomedical application in the development of novel antimicrobial and anticancer agents.

14.
Toxics ; 10(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35324757

ABSTRACT

Environmental contamination by nanoparticles (NPs) and drugs represents one of the most debated issues of the last years. The aquatic biome and, indirectly, human health are strongly influenced by the negative effects induced by the widespread presence of pharmaceutical products in wastewater, mainly due to the massive use of antibiotics and inefficient treatment of the waters. The present study aimed to evaluate the harmful consequences due to exposure to antibiotics and NPs, alone and in combination, in the aquatic environment. By exploiting some of their peculiar characteristics, such as small size and ability to bind different types of substances, NPs can carry drugs into the body, showing potential genotoxic effects. The research was conducted on zebrafish (Danio rerio) exposed in vivo to lincomycin (100 mg/L) and titanium dioxide nanoparticles (TiO2 NPs) (10 µg/L) for 7 and 14 exposure days. The effects on zebrafish were evaluated in terms of cell viability, DNA fragmentation, and genomic template stability (GTS%) investigated using Trypan blue staining, TUNEL assay, and the random amplification of polymorphic DNA PCR (RAPD PCR) technique, respectively. Our results show that after TiO2 NPs exposure, as well as after TiO2 NPs and lincomycin co-exposure, the percentage of damaged DNA significantly increased and cell viability decreased. On the contrary, exposure to lincomycin alone caused only a GTS% reduction after 14 exposure days. Therefore, the results allow us to assert that genotoxic effect in target cells could be through a synergistic effect, also potentially mediated by the establishment of intermolecular interactions between lincomycin and TiO2 NPs.

15.
World J Mens Health ; 40(3): 380-398, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35021297

ABSTRACT

Antisperm antibodies (ASA), as a cause of male infertility, have been detected in infertile males as early as 1954. Multiple causes of ASA production have been identified, and they are due to an abnormal exposure of mature germ cells to the immune system. ASA testing (with mixed anti-globulin reaction, and immunobead binding test) was described in the WHO manual 5th edition and is most recently listed among the extended semen tests in the WHO manual 6th edition. The relationship between ASA and infertility is somewhat complex. The presence of sperm agglutination, while insufficient to diagnose immunological infertility, may indicate the presence of ASA. However, ASA can also be present in the absence of any sperm agglutination. The andrological management of ASA depends on the etiology and individual practices of clinicians. In this article, we provide a comprehensive review of the causes of ASA production, its role in immunological male infertility, clinical indications of ASA testing, and the available therapeutic options. We also provide the details of laboratory procedures for assessment of ASA together with important measures for quality control. Additionally, laboratory and clinical scenarios are presented to guide the reader in the management of ASA and immunological male infertility. Furthermore, we report the results of a recent worldwide survey, conducted to gather information about clinical practices in the management of immunological male infertility.

16.
World J Mens Health ; 40(2): 208-216, 2022 04.
Article in English | MEDLINE | ID: mdl-34169680

ABSTRACT

Retrograde ejaculation (RE) is a condition defined as the backward flow of the semen during ejaculation, and when present can result in male infertility. RE may be partial or complete, resulting in either low seminal volume or complete absence of the ejaculate (dry ejaculate). RE can result from anatomic, neurological or pharmacological conditions. The treatment approaches outlined are determined by the cause. Alkalinizing urinary pH with oral medications or by adding sperm wash media into the bladder prior to ejaculation may preserve the viability of the sperm. This article provides a step-by-step guide to diagnose RE and the optimal techniques to retrieve sperm.

17.
World J Mens Health ; 40(2): 191-207, 2022 04.
Article in English | MEDLINE | ID: mdl-34169683

ABSTRACT

The current WHO 2010 manual for human semen analysis defines leukocytospermia as the presence of peroxidase-positive leukocytes at a concentration >1×106/mL of semen. Granular leukocytes when activated are capable of generating high levels of reactive oxygen species in semen resulting in oxidative stress. Oxidative stress has been correlated with poor sperm quality, increased level of sperm DNA fragmentation and low fertility potential. The presence of leukocytes and pathogens in the semen may be a sign of infection and/or localized inflammatory response in the male genital tract and the accessory glands. Common uro-pathogens including Chlamydia trachomatis, Ureaplasma urealyticum, Neisseria gonorrhoeae, Mycoplasma hominis, and Escherichia coli can cause epididymitis, epididymo-orchitis, or prostatitis. The relationship between leukocytospermia and infection is unclear. Therefore, we describe the pathogens responsible for male genital tract infections and their association with leukocytospermia. The review also examines the diagnostic tests available to identify seminal leukocytes. The role of leukocytospermia in male infertility and its management is also discussed.

18.
Environ Sci Pollut Res Int ; 29(41): 62208-62218, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34825339

ABSTRACT

The increased titanium dioxide nanoparticles (TiO2-NPs) spread and their interaction with organic and inorganic pollutants arouses concern for the potential hazards for organisms and environment. This study tested in vitro the genotoxic effects of TiO2-NPs (1 µg/mL) and cadmium (Cd) (0.1 µg/mL) co-exposure using Dicentrarchus labrax embryonic cells (DLEC) as experimental model. The genotoxicity tests (Comet assay, Diffusion Assay and Random Amplification of Polymorphic DNA (RAPD-PCR) were conducted after 3, 24 and 48 hours of exposure to TiO2-NPs and Cd alone and in combination. The results showed that the percentage of DNA damage and apoptotic cells increases following 48 hours TiO2-NPs exposure, while DNA instability was detected for all the times tested. Cd induced genotoxic effects starting from 3 hour-exposure and for all the treatment times. Cd + TiO2-NPs co-exposure did not cause any genomic damage or apoptosis for all the exposure times. The possibility that Cd and TiO2-NPs form aggregates no longer able of penetrating the nucleus and damaging the genetic material is discussed.


Subject(s)
Bass , Metal Nanoparticles , Nanoparticles , Animals , Cadmium/toxicity , DNA , DNA Damage , Genomics , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Random Amplified Polymorphic DNA Technique , Titanium/toxicity
19.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36616010

ABSTRACT

The present paper described the first green synthesis of silver nanoparticles (AgNPs) from the extremophile plant Aeonium haworthii. The characterization of the biosynthesized silver nanoparticles was carried out by using UV-Vis, FTIR and STM analysis. The antioxidant, antidiabetic and antimicrobial properties were also reported. The newly described AgNPs were spherical in shape and had a size of 35-55 nm. The lowest IC50 values measured by the DPPH assay indicate the superior antioxidant behavior of our AgNPs as opposed to ascorbic acid. The silver nanoparticles show high antidiabetic activity determined by the inhibitory effect of α amylase as compared to the standard Acarbose. Moreover, the AgNPs inhibit bacterial growth owing to a bactericidal effect with the MIC values varying from 0.017 to 1.7 µg/mL. The antifungal action was evaluated against Candida albicans, Candida tropicalis, Candida glabrata, Candida sake and non-dermatophytic onychomycosis fungi. A strong inhibitory effect on Candida factors' virulence was observed as proteinase and phospholipase limitations. In addition, the microscopic observations show that the silver nanoparticles cause the eradication of blastospores and block filamentous morphogenesis. The combination of the antioxidant, antimicrobial and antidiabetic behaviors of the new biosynthesized silver nanoparticles highlights their promising use as natural phytomedicine agents.

20.
Antioxidants (Basel) ; 10(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34356370

ABSTRACT

Oxidative imbalances in the gestational phase are responsible for certain complications during pregnancy and for foetal and neonatal genetic disorders. In this work, using human amniocytes, we aimed to evaluate the protection provided to foetal DNA by two concentrations of antioxidant molecules, α-lipoic acid (LA) and curcumin (Cur), against hydrogen peroxide (H2O2)-induced damage. Genotoxicity tests, performed by the random amplification of polymorphic DNA (RAPD-PCR) technique and TUNEL tests, showed that the lowest concentration of LA-protected cells and DNA from H2O2 insults. However, a greater ability to protect the amniocytes' DNA against H2O2 was observed following co-treatment with the highest concentration of Cur with H2O2. In fact, a genomic template stability (GTS%) similar to that of the negative control and a statistically significant reduction in the DNA fragmentation index (DFI) were revealed. Moreover, following a combined treatment with both antioxidants and H2O2, no statistical difference from controls was observed, in terms of both induced mutations and DNA breaks. Furthermore, no effect on morphology or cell viability was observed. The results demonstrate the ability of LA and Cur to protect the genetic material of amniocytes against genotoxic insults, suggesting their beneficial effects in pathologies related to oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...