Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Psychiatry ; : appiajp20230247, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745458

ABSTRACT

OBJECTIVE: Treatment-resistant depression (TRD) occurs in roughly one-third of all individuals with major depressive disorder (MDD). Although research has suggested a significant common variant genetic component of liability to TRD, with heritability estimated at 8% when compared with non-treatment-resistant MDD, no replicated genetic loci have been identified, and the genetic architecture of TRD remains unclear. A key barrier to this work has been the paucity of adequately powered cohorts for investigation, largely because of the challenge in prospectively investigating this phenotype. The objective of this study was to perform a well-powered genetic study of TRD. METHODS: Using receipt of electroconvulsive therapy (ECT) as a surrogate for TRD, the authors applied standard machine learning methods to electronic health record data to derive predicted probabilities of receiving ECT. These probabilities were then applied as a quantitative trait in a genome-wide association study of 154,433 genotyped patients across four large biobanks. RESULTS: Heritability estimates ranged from 2% to 4.2%, and significant genetic overlap was observed with cognition, attention deficit hyperactivity disorder, schizophrenia, alcohol and smoking traits, and body mass index. Two genome-wide significant loci were identified, both previously implicated in metabolic traits, suggesting shared biology and potential pharmacological implications. CONCLUSIONS: This work provides support for the utility of estimation of disease probability for genomic investigation and provides insights into the genetic architecture and biology of TRD.

2.
Nat Commun ; 15(1): 1755, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409228

ABSTRACT

Nearly two hundred common-variant depression risk loci have been identified by genome-wide association studies (GWAS). However, the impact of rare coding variants on depression remains poorly understood. Here, we present whole-exome sequencing analyses of depression with seven different definitions based on survey, questionnaire, and electronic health records in 320,356 UK Biobank participants. We showed that the burden of rare damaging coding variants in loss-of-function intolerant genes is significantly associated with risk of depression with various definitions. We compared the rare and common genetic architecture across depression definitions by genetic correlation and showed different genetic relationships between definitions across common and rare variants. In addition, we demonstrated that the effects of rare damaging coding variant burden and polygenic risk score on depression risk are additive. The gene set burden analyses revealed overlapping rare genetic variant components with developmental disorder, autism, and schizophrenia. Our study provides insights into the contribution of rare coding variants, separately and in conjunction with common variants, on depression with various definitions and their genetic relationships with neurodevelopmental disorders.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Exome Sequencing , Biological Specimen Banks , Depression/genetics , UK Biobank
3.
JAMA Netw Open ; 5(12): e2248060, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36580336

ABSTRACT

Importance: Developmental language disorder (DLD) is a common (with up to 7% prevalence) yet underdiagnosed childhood disorder whose underlying biological profile and comorbidities are not fully understood, especially at the population level. Objective: To identify clinically relevant conditions that co-occur with DLD at the population level. Design, Setting, and Participants: This case-control study used an electronic health record (EHR)-based population-level approach to compare the prevalence of comorbid health phenotypes between DLD cases and matched controls. These cases were identified using the Automated Phenotyping Tool for Identifying Developmental Language Disorder algorithm of the Vanderbilt University Medical Center EHR, and a phenome enrichment analysis was used to identify comorbidities. An independent sample was selected from the Geisinger Health System EHR to test the replication of the phenome enrichment using the same phenotyping and analysis pipeline. Data from the Vanderbilt EHR were accessed between March 2019 and October 2020, while data from the Geisinger EHR were accessed between January and March 2022. Main Outcomes and Measures: Common and rare comorbidities of DLD at the population level were identified using EHRs and a phecode-based enrichment analysis. Results: Comorbidity analysis was conducted for 5273 DLD cases (mean [SD] age, 16.8 [7.2] years; 3748 males [71.1%]) and 26 353 matched controls (mean [SD] age, 14.6 [5.5] years; 18 729 males [71.1%]). Relevant phenotypes associated with DLD were found, including learning disorder, delayed milestones, disorders of the acoustic nerve, conduct disorders, attention-deficit/hyperactivity disorder, lack of coordination, and other motor deficits. Several other health phenotypes not previously associated with DLD were identified, such as dermatitis, conjunctivitis, and weight and nutrition, representing a new window into the clinical complexity of DLD. Conclusions and Relevance: This study found both rare and common comorbidities of DLD. Comorbidity profiles may be leveraged to identify risk of additional health challenges, beyond language impairment, among children with DLD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Language Development Disorders , Learning Disabilities , Male , Humans , Case-Control Studies , Attention Deficit Disorder with Hyperactivity/epidemiology , Comorbidity
4.
Complex Psychiatry ; 8(1-2): 47-55, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36545045

ABSTRACT

Introduction: Opioid use disorders (OUDs) constitute a major public health issue, and we urgently need alternative methods for characterizing risk for OUD. Electronic health records (EHRs) are useful tools for understanding complex medical phenotypes but have been underutilized for OUD because of challenges related to underdiagnosis, binary diagnostic frameworks, and minimally characterized reference groups. As a first step in addressing these challenges, a new paradigm is warranted that characterizes risk for opioid prescription misuse on a continuous scale of severity, i.e., as a continuum. Methods: Across sites within the PsycheMERGE network, we extracted prescription opioid data and diagnoses that co-occur with OUD (including psychiatric and substance use disorders, pain-related diagnoses, HIV, and hepatitis C) for over 2.6 million patients across three health registries (Vanderbilt University Medical Center, Mass General Brigham, Geisinger) between 2005 and 2018. We defined three groups based on levels of opioid exposure: no prescriptions, minimal exposure, and chronic exposure and then compared the comorbidity profiles of these groups to the full registries and to those with OUD diagnostic codes. Results: Our results confirm that EHR data reflects known higher prevalence of substance use disorders, psychiatric disorders, medical, and pain diagnoses in patients with OUD diagnoses and chronic opioid use. Comorbidity profiles that distinguish opioid exposure are strikingly consistent across large health systems, indicating the phenotypes described in this new quantitative framework are robust to health systems differences. Conclusion: This work indicates that EHR prescription opioid data can serve as a platform to characterize complex risk markers for OUD using existing data.

5.
Circulation ; 146(1): 36-47, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35533093

ABSTRACT

BACKGROUND: Timely diagnosis of structural heart disease improves patient outcomes, yet many remain underdiagnosed. While population screening with echocardiography is impractical, ECG-based prediction models can help target high-risk patients. We developed a novel ECG-based machine learning approach to predict multiple structural heart conditions, hypothesizing that a composite model would yield higher prevalence and positive predictive values to facilitate meaningful recommendations for echocardiography. METHODS: Using 2 232 130 ECGs linked to electronic health records and echocardiography reports from 484 765 adults between 1984 to 2021, we trained machine learning models to predict the presence or absence of any of 7 echocardiography-confirmed diseases within 1 year. This composite label included the following: moderate or severe valvular disease (aortic/mitral stenosis or regurgitation, tricuspid regurgitation), reduced ejection fraction <50%, or interventricular septal thickness >15 mm. We tested various combinations of input features (demographics, laboratory values, structured ECG data, ECG traces) and evaluated model performance using 5-fold cross-validation, multisite validation trained on 1 site and tested on 10 independent sites, and simulated retrospective deployment trained on pre-2010 data and deployed in 2010. RESULTS: Our composite rECHOmmend model used age, sex, and ECG traces and had a 0.91 area under the receiver operating characteristic curve and a 42% positive predictive value at 90% sensitivity, with a composite label prevalence of 17.9%. Individual disease models had area under the receiver operating characteristic curves from 0.86 to 0.93 and lower positive predictive values from 1% to 31%. Area under the receiver operating characteristic curves for models using different input features ranged from 0.80 to 0.93, increasing with additional features. Multisite validation showed similar results to cross-validation, with an aggregate area under the receiver operating characteristic curve of 0.91 across our independent test set of 10 clinical sites after training on a separate site. Our simulated retrospective deployment showed that for ECGs acquired in patients without preexisting structural heart disease in the year 2010, 11% were classified as high risk and 41% (4.5% of total patients) developed true echocardiography-confirmed disease within 1 year. CONCLUSIONS: An ECG-based machine learning model using a composite end point can identify a high-risk population for having undiagnosed, clinically significant structural heart disease while outperforming single-disease models and improving practical utility with higher positive predictive values. This approach can facilitate targeted screening with echocardiography to improve underdiagnosis of structural heart disease.


Subject(s)
Heart Diseases , Machine Learning , Adult , Echocardiography , Electrocardiography , Heart Diseases/diagnostic imaging , Heart Diseases/epidemiology , Humans , Retrospective Studies
6.
Circulation ; 143(13): 1287-1298, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33588584

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new-onset AF could be predicted, targeted screening could be used to find it early. We hypothesized that a deep neural network could predict new-onset AF from the resting 12-lead ECG and that this prediction may help identify those at risk of AF-related stroke. METHODS: We used 1.6 M resting 12-lead digital ECG traces from 430 000 patients collected from 1984 to 2019. Deep neural networks were trained to predict new-onset AF (within 1 year) in patients without a history of AF. Performance was evaluated using areas under the receiver operating characteristic curve and precision-recall curve. We performed an incidence-free survival analysis for a period of 30 years following the ECG stratified by model predictions. To simulate real-world deployment, we trained a separate model using all ECGs before 2010 and evaluated model performance on a test set of ECGs from 2010 through 2014 that were linked to our stroke registry. We identified the patients at risk for AF-related stroke among those predicted to be high risk for AF by the model at different prediction thresholds. RESULTS: The area under the receiver operating characteristic curve and area under the precision-recall curve were 0.85 and 0.22, respectively, for predicting new-onset AF within 1 year of an ECG. The hazard ratio for the predicted high- versus low-risk groups over a 30-year span was 7.2 (95% CI, 6.9-7.6). In a simulated deployment scenario, the model predicted new-onset AF at 1 year with a sensitivity of 69% and specificity of 81%. The number needed to screen to find 1 new case of AF was 9. This model predicted patients at high risk for new-onset AF in 62% of all patients who experienced an AF-related stroke within 3 years of the index ECG. CONCLUSIONS: Deep learning can predict new-onset AF from the 12-lead ECG in patients with no previous history of AF. This prediction may help identify patients at risk for AF-related strokes.


Subject(s)
Atrial Fibrillation/diagnosis , Deep Learning/standards , Stroke/etiology , Atrial Fibrillation/complications , Electrocardiography , Female , Humans , Male , Neural Networks, Computer , Stroke/mortality , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...