Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10217, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702416

ABSTRACT

Mitochondrial DNA sequences are frequently transferred into the nuclear genome, generating nuclear mitochondrial DNA sequences (NUMTs). Here, we analysed, for the first time, NUMTs in the domestic yak genome. We obtained 499 alignment matches covering 340.2 kbp of the yak nuclear genome. After a merging step, we identified 167 NUMT regions with a total length of ~ 503 kbp, representing 0.02% of the nuclear genome. We discovered copies of all mitochondrial regions and found that most NUMT regions are intergenic or intronic and mostly untranscribed. 98 different NUMT regions from domestic yak showed high homology with cow and/or wild yak genomes, suggesting selection or hybridization between domestic/wild yak and cow. To rule out the possibility that the identified NUMTs could be artifacts of the domestic yak genome assembly, we validated experimentally five NUMT regions by PCR amplification. As NUMT regions show high similarity to the mitochondrial genome can potentially pose a risk to domestic yak DNA mitochondrial studies, special care is therefore needed to select primers for PCR amplification of mitochondrial DNA sequences.


Subject(s)
Cell Nucleus , DNA, Mitochondrial , Genome, Mitochondrial , Animals , Cattle/genetics , DNA, Mitochondrial/genetics , Cell Nucleus/genetics , Animals, Domestic/genetics , Sequence Analysis, DNA/methods
2.
J Appl Genet ; 65(2): 399-402, 2024 May.
Article in English | MEDLINE | ID: mdl-38418802

ABSTRACT

The CRISPR/Cas9 technique applied to modify the cattle genome has value in increasing animal health and welfare. Here, we established a simple, fast, and efficient cloning-free CRISPR/Cas9 protocol for large deletions of genomic loci in the frequently used model bovine MDBK cell line. The main advantages of our protocol are as follows: (i) pre-screening of the sgRNA efficiency with a fast and simple cleavage assay, (ii) reliable detection of genomic edits primarily by PCR and confirmed by DNA sequencing, and (iii) single cell sorting with FACS providing specific genetic information from modified cells of interest. Therefore, our method could be successfully applied in different studies, including functional validation of any genetic or regulatory elements.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Cattle , Animals , Base Sequence , Cell Line
3.
Sci Rep ; 13(1): 8999, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268760

ABSTRACT

DGAT1 is playing a major role in fat metabolism and triacylglyceride synthesis. Only two DGAT1 loss-of-function variants altering milk production traits in cattle have been reported to date, namely p.M435L and p.K232A. The p.M435L variant is a rare alteration and has been associated with skipping of exon 16 which results in a non-functional truncated protein, and the p.K232A-containing haplotype has been associated with modifications of the splicing rate of several DGAT1 introns. In particular, the direct causality of the p.K232A variant in decreasing the splicing rate of the intron 7 junction was validated using a minigene assay in MAC-T cells. As both these DGAT1 variants were shown to be spliceogenic, we developed a full-length gene assay (FLGA) to re-analyse p.M435L and p.K232A variants in HEK293T and MAC-T cells. Qualitative RT-PCR analysis of cells transfected with the full-length DGAT1 expression construct carrying the p.M435L variant highlighted complete skipping of exon 16. The same analysis performed using the construct carrying the p.K232A variant showed moderate differences compared to the wild-type construct, suggesting a possible effect of this variant on the splicing of intron 7. Finally, quantitative RT-PCR analyses of cells transfected with the p.K232A-carrying construct did not show any significant modification on the splicing rate of introns 1, 2 and 7. In conclusion, the DGAT1 FLGA confirmed the p.M435L impact previously observed in vivo, but invalidated the hypothesis whereby the p.K232A variant strongly decreased the splicing rate of intron 7.


Subject(s)
Diacylglycerol O-Acyltransferase , Animals , Cattle , Female , Humans , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , HEK293 Cells , Lactation/genetics , Milk/metabolism , Polymorphism, Genetic , RNA Precursors/metabolism
4.
Nat Genet ; 54(9): 1438-1447, 2022 09.
Article in English | MEDLINE | ID: mdl-35953587

ABSTRACT

Characterization of genetic regulatory variants acting on livestock gene expression is essential for interpreting the molecular mechanisms underlying traits of economic value and for increasing the rate of genetic gain through artificial selection. Here we build a Cattle Genotype-Tissue Expression atlas (CattleGTEx) as part of the pilot phase of the Farm animal GTEx (FarmGTEx) project for the research community based on 7,180 publicly available RNA-sequencing (RNA-seq) samples. We describe the transcriptomic landscape of more than 100 tissues/cell types and report hundreds of thousands of genetic associations with gene expression and alternative splicing for 23 distinct tissues. We evaluate the tissue-sharing patterns of these genetic regulatory effects, and functionally annotate them using multiomics data. Finally, we link gene expression in different tissues to 43 economically important traits using both transcriptome-wide association and colocalization analyses to decipher the molecular regulatory mechanisms underpinning such agronomic traits in cattle.


Subject(s)
Quantitative Trait Loci , Transcriptome , Animals , Cattle/genetics , Gene Expression Regulation , Phenotype , Quantitative Trait Loci/genetics , Sequence Analysis, RNA , Transcriptome/genetics
5.
Genet Sel Evol ; 53(1): 63, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34301193

ABSTRACT

BACKGROUND: Linkage disequilibrium (LD) is a key parameter to study the history of populations and to identify and fine map quantitative trait loci (QTL) and it has been studied for many years in animal populations. The advent of new genotyping technologies has allowed whole-genome LD studies in most cattle populations. However, to date, long-range LD (LRLD) between distant variants on the genome has not been investigated in detail in cattle. Here, we present the first comprehensive study of LRLD in French beef cattle by analysing data on 672 Charolais (CHA), 462 Limousine (LIM) and 326 Blonde d'Aquitaine (BLA) individuals that were genotyped on the Illumina BovineHD Beadchip. Furthermore, whole-genome LD and haplotype block structure were analysed in these three breeds. RESULTS: We computed linkage disequilibrium (r2) values for 5.9, 5.6 and 6.0 billion pairs of SNPs on the 29 autosomes of CHA, LIM and BLA, respectively. Mean r2 values drop to less than 0.1 for distances between SNPs greater than 120 kb. However, for the first time, we detected the existence of LRLD in the three main French beef breeds. In total, 598, 266, and 795 LRLD events (r2 ≥ 0.6) were detected in CHA, LIM and BLA, respectively. Each breed had predominantly population-specific LRLD interactions, although shared LRLD events occurred in a number of regions (55 LRLD events were shared between two breeds and nine between the three breeds). Examples of possible functional gene interactions and QTL co-location were observed with some of these LRLD events, which suggests epistatic selection. CONCLUSIONS: We identified long-range linkage disequilibrium for the first time in French beef cattle populations. Epistatic selection may be the main source of the observed LRLD events, but other forces may also be involved. LRLD information should be accounted for in genome-wide association studies.


Subject(s)
Cattle/genetics , Linkage Disequilibrium , Animals , Genome-Wide Association Study/methods , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Red Meat/standards
6.
Sci Rep ; 11(1): 7537, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824377

ABSTRACT

The mineral composition of bovine milk plays an important role in determining its nutritional and cheese-making value. Concentrations of the main minerals predicted from mid-infrared spectra produced during milk recording, combined with cow genotypes, provide a unique opportunity to decipher the genetic determinism of these traits. The present study included 1 million test-day predictions of Ca, Mg, P, K, Na, and citrate content from 126,876 Montbéliarde cows, of which 19,586 had genotype data available. All investigated traits were highly heritable (0.50-0.58), with the exception of Na (0.32). A sequence-based genome-wide association study (GWAS) detected 50 QTL (18 affecting two to five traits) and positional candidate genes and variants, mostly located in non-coding sequences. In silico post-GWAS analyses highlighted 877 variants that could be regulatory SNPs altering transcription factor (TF) binding sites or located in non-coding RNA (mainly lncRNA). Furthermore, we found 47 positional candidate genes and 45 TFs highly expressed in mammary gland compared to 90 other bovine tissues. Among the mammary-specific genes, SLC37A1 and ANKH, encoding proteins involved in ion transport were located in the most significant QTL. This study therefore highlights a comprehensive set of functional candidate genes and variants that affect milk mineral content.


Subject(s)
Lactation/genetics , Milk/chemistry , Animals , Cattle/genetics , Female , Genetic Variation/genetics , Genome-Wide Association Study/methods , Genotype , Lactation/metabolism , Lactation/physiology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Minerals/metabolism , Phenotype , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
7.
J Anim Sci ; 99(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33624102

ABSTRACT

The mutation T3811 → G3811 (TG3811) discovered in the myostatin gene of the Blonde d'Aquitaine breed is suspected of contributing to the outstanding muscularity of this breed. An experiment was designed to estimate the effect of this mutation in an F2 and back-cross Blonde d'Aquitaine × Holstein population. By genotyping all known mutations in the myostatin gene, it was ensured that the TG3811 mutation was indeed the only known mutation segregating in this population. Fifty-six calves (43 F2, 13 back-cross) were intensively fattened and slaughtered at 24.0 ± 1.4 wk of age. The effects of the mutation were estimated by comparing the calves with the [T/T] (n = 18), [T/G] (n = 30), and [G/G] (n = 8) genotypes. Highly significant substitution effects (P < 0.001), above + 1.2 phenotypic SD, were shown on carcass yield and muscularity scores. Birth weight (P < 0.001) was positively affected by the mutation (+0.8 SD) but not growth rate (P = 0.97), while carcass length (P = 0.03), and fatness (P ≤ 0.03) were negatively affected (-0.5 to -0.7 SD). The characteristics of the Triceps brachii muscle were affected by the mutation (P < 0.001), with lower ICDH activity (oxidative) and a higher proportion of myosin type 2X muscle fibers (fast twitch). The effects of the TG3811 mutation were similar to those of other known myostatin mutations, although the Blonde d'Aquitaine animals, which are predominantly [G/G] homozygous, do not exhibit extreme double muscling.


Subject(s)
Myostatin , Red Meat , Animals , Cattle/genetics , Genotype , Mutation , Myostatin/genetics , Phenotype
8.
Genet Sel Evol ; 53(1): 3, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397281

ABSTRACT

BACKGROUND: In the early 20th century, Cuban farmers imported Charolais cattle (CHFR) directly from France. These animals are now known as Chacuba (CHCU) and have become adapted to the rough environmental tropical conditions in Cuba. These conditions include long periods of drought and food shortage with extreme temperatures that European taurine cattle have difficulty coping with. RESULTS: In this study, we used whole-genome sequence data from 12 CHCU individuals together with 60 whole-genome sequences from six additional taurine, indicus and crossed breeds to estimate the genetic diversity, structure and accurate ancestral origin of the CHCU animals. Although CHCU animals are assumed to form a closed population, the results of our admixture analysis indicate a limited introgression of Bos indicus. We used the extended haplotype homozygosity (EHH) approach to identify regions in the genome that may have had an important role in the adaptation of CHCU to tropical conditions. Putative selection events occurred in genomic regions with a high proportion of Bos indicus, but they were not sufficient to explain adaptation of CHCU to tropical conditions by Bos indicus introgression only. EHH suggested signals of potential adaptation in genomic windows that include genes of taurine origin involved in thermogenesis (ATP9A, GABBR1, PGR, PTPN1 and UCP1) and hair development (CCHCR1 and CDSN). Within these genes, we identified single nucleotide polymorphisms (SNPs) that may have a functional impact and contribute to some of the observed phenotypic differences between CHCU and CHFR animals. CONCLUSIONS: Whole-genome data confirm that CHCU cattle are closely related to Charolais from France (CHFR) and Canada, but also reveal a limited introgression of Bos indicus genes in CHCU. We observed possible signals of recent adaptation to tropical conditions between CHCU and CHFR founder populations, which were largely independent of the Bos indicus introgression. Finally, we report candidate genes and variants that may have a functional impact and explain some of the phenotypic differences observed between CHCU and CHFR cattle.


Subject(s)
Cattle/genetics , Genotype , Polymorphism, Genetic , Thermotolerance/genetics , Animal Fur/metabolism , Animals , Cattle/physiology , Haplotypes , Homozygote , Thermogenesis/genetics , Tropical Climate , Whole Genome Sequencing
9.
Animals (Basel) ; 10(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261195

ABSTRACT

Inbreeding and effective population size (Ne) are fundamental indicators for the management and conservation of genetic diversity in populations. Genomic inbreeding gives accurate estimates of inbreeding, and the Ne determines the rate of the loss of genetic variation. The objective of this work was to study the distribution of runs of homozygosity (ROHs) in order to estimate genomic inbreeding (FROH) and an effective population size using 38,789 Single Nucleotide Polymorphisms (SNPs) from the Illumina Bovine 50K BeadChip in 86 samples from populations of Charolais de Cuba (n = 40) cattle and to compare this information with French (n = 20) and British Charolais (n = 26) populations. In the Cuban, French, and British Charolais populations, the average estimated genomic inbreeding values using the FROH statistics were 5.7%, 3.4%, and 4%, respectively. The dispersion measured by variation coefficient was high at 43.9%, 37.0%, and 54.2%, respectively. The effective population size experienced a very similar decline during the last century in Charolais de Cuba (from 139 to 23 individuals), in French Charolais (from 142 to 12), and in British Charolais (from 145 to 14) for the ~20 last generations. However, the high variability found in the ROH indicators and FROH reveals an opportunity for maintaining the genetic diversity of this breed with an adequate mating strategy, which can be favored with the use of molecular markers. Moreover, the detected ROH were compared to previous results obtained on the detection of signatures of selection in the same breed. Some of the observed signatures were confirmed by the ROHs, emphasizing the process of adaptation to tropical climate experienced by the Charolais de Cuba population.

10.
Sci Rep ; 10(1): 2077, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034268

ABSTRACT

Nuclear copies of the mitochondrial DNA (NUMTs) have already been described in several species. In this context, we identified and analysed 166 bovine NUMT regions with a total length of 430 kbp, representing about 0.02% of the cattle nuclear genome. Copies of all mitochondrial regions were detected in the nuclear genome, with distinct degrees of sequence similarity to the mitogenome. Some NUMT regions include large mitogenome segments and show high similarity to the organelle genome sequence. NUMT regions are frequently modified by insertion of repetitive sequences and by sequence rearrangements. We confirmed the existence of 29 NUMT regions by PCR amplification using DNA from the cow (Dominette) which was used to generate the bovine genome reference sequence, ruling out the possibility that these NUMTs could be artifacts of the genome assembly. As there are NUMT regions with high similarity to the mitogenome, special care is needed when designing primers for mitochondrial DNA amplification. Our results can therefore be used to avoid co-amplification of bovine nuclear sequences similar to mitochondrial DNA.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genome/genetics , Animals , Cattle/genetics , Gene Rearrangement/genetics , Genome, Mitochondrial/genetics , Mitochondria/genetics , Polymerase Chain Reaction , Repetitive Sequences, Nucleic Acid/genetics
11.
PLoS One ; 14(8): e0220244, 2019.
Article in English | MEDLINE | ID: mdl-31374089

ABSTRACT

Cattle with subclinical endometritis (SCE) are sub-fertile and diagnosing subclinical uterine disease remains a challenge. The hypothesis for this study was that endometrial inflammation is reflected in mRNA expression patterns of peripheral blood leucocytes. Transcriptome profiles were evaluated in healthy cows and in cows with SCE using circulating white blood cells (WBC) and endometrial biopsy samples collected from the same animals at 45-55 days postpartum. Bioinformatic analyses of microarray-based transcriptional data identified gene profiles associated with distinct biological functions in circulating WBC and endometrium. In circulating WBC, SCE promotes a pro-inflammatory environment, whereas functions related to tissue remodeling are also affected in the endometrium. Nineteen differentially expressed genes associated with SCE were common to both circulating WBC and the endometrium. Among these genes, transcript abundance of immune factors C3, C2, LTF, PF4 and TRAPPC13 were up-regulated in SCE cows at 45-55 days postpartum. Moreover, mRNA expression of C3, CXCL8, LTF, TLR2 and TRAPPC13 was temporally regulated during the postpartum period in circulating WBC of healthy cows compared with SCE cows. This observation might indicate an advantageous modulation of the immune system in healthy animals. The transcript abundance of these genes represents a potential source of indicators for postpartum uterine health.


Subject(s)
Cattle Diseases/blood , Cattle Diseases/genetics , Dairying , Endometritis/veterinary , Endometrium/metabolism , Transcriptome , Animals , Cattle , Endometritis/blood , Endometritis/genetics , Female , Leukocytes/metabolism , RNA, Messenger/blood , RNA, Messenger/genetics
12.
Sci Rep ; 9(1): 4297, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862965

ABSTRACT

Allelic imbalance is a common phenomenon in mammals that plays an important role in gene regulation. An Allele Specific Expression (ASE) approach can be used to detect variants with a cis-regulatory effect on gene expression. In cattle, this type of study has only been done once in Holstein. In our study we performed a genome-wide analysis of ASE in 19 Limousine muscle samples. We identified 5,658 ASE SNPs (Single Nucleotide Polymorphisms showing allele specific expression) in 13% of genes with detectable expression in the Longissimus thoraci muscle. Interestingly we found allelic imbalance in AOX1, PALLD and CAST genes. We also found 2,107 ASE SNPs located within genomic regions associated with meat or carcass traits. In order to identify causative cis-regulatory variants explaining ASE we searched for SNPs altering binding sites of transcription factors or microRNAs. We identified one SNP in the 3'UTR region of PRNP that could be a causal regulatory variant modifying binding sites of several miRNAs. We showed that ASE is frequent within our muscle samples. Our data could be used to elucidate the molecular mechanisms underlying gene expression imbalance.


Subject(s)
Alleles , Muscle, Skeletal/metabolism , 3' Untranslated Regions/genetics , Allelic Imbalance/genetics , Allelic Imbalance/physiology , Animals , Cattle , Genome-Wide Association Study , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
13.
Genet Mol Biol ; 42(1): 52-61, 2019.
Article in English | MEDLINE | ID: mdl-30776288

ABSTRACT

To carry out effective genome-wide association studies, information about linkage disequilibrium (LD) is essential. Here, we used medium-density SNP chips to provide estimates of LD in native Tunisian cattle. The two measures of LD that were used, mean r2 and D', decreased from 0.26 to 0.05 and from 0.73 to 0.40, respectively, when the distance between markers increased from less than 20 Kb to 200 Kb. The decay in LD over physical distance occurred at a faster rate than that reported for European and other indigenous breeds, and reached background levels at less than 500 Kb distance. This is consistent with the absence of strong selective pressure within the Tunisian population and suggests that, in order to be effective, any potential genome-wide association mapping studies will need to use chips with higher marker density. An analysis of effective population size (Ne) based on LD data showed a decline in past Ne, with a sudden drop starting about eight generations ago. This finding, combined with the high levels of recent inbreeding revealed by runs of homozygosity (ROH) analysis, indicate that this population is endangered and may be in urgent need of a conservation plan that includes a well-designed genetic management program.

14.
Sci Rep ; 8(1): 11005, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30030481

ABSTRACT

In this study, we used BovineSNP50 Genotyping BeadChip data to estimate the structure, putative ancestral origin as well as to identify regions with selective sweeps that may have had an important role in the adaptation to tropical conditions of the 'Charolais de Cuba' (CHCU) breed. According to a principal component analysis, CHCU samples cluster together with taurine breeds with an estimated 93% of taurus ancestral alleles. Despite the short period since importation, we detected differentiation (Fst = 0.049) between the French Charolaise (CHA) and CHCU. However, CHA breed was the closest breed to CHCU followed by other hybrids breed with a clear CHA origin. Linkage disequilibrium (r2) decay tends to be lower in CHCU compared to CHA probably due to a less intense artificial selection programs of CHCU. Signals of recent adaptation to tropical conditions between CHCU and CHA were identified. Genes mapping within those regions reflect different functions related to immunity, metabolic changes and heat tolerance (CHCU) and muscle development and meat quality (CHA) that may have had an important role in the phenotypic differentiation of these breeds. Further studies will expand our knowledge on the molecular basis of adaptation of cattle to tropical conditions and molecular process associated with meat quality traits.


Subject(s)
Breeding/standards , Phylogeography , Red Meat/standards , Selection, Genetic/genetics , Animals , Biodiversity , Cattle , Cuba , France , Linkage Disequilibrium/genetics , Phenotype
15.
Nat Genet ; 50(3): 362-367, 2018 03.
Article in English | MEDLINE | ID: mdl-29459679

ABSTRACT

Stature is affected by many polymorphisms of small effect in humans 1 . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10-8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.


Subject(s)
Body Size/genetics , Cattle/genetics , Conserved Sequence , Genome-Wide Association Study , Mammals/genetics , Animals , Body Height/genetics , Cattle/classification , Genetic Association Studies/veterinary , Genetic Variation , Genome-Wide Association Study/statistics & numerical data , Genome-Wide Association Study/veterinary , Humans , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
16.
Genet Sel Evol ; 49(1): 77, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29065859

ABSTRACT

BACKGROUND: Copy number variations (CNV) are known to play a major role in genetic variability and disease pathogenesis in several species including cattle. In this study, we report the identification and characterization of CNV in eight French beef and dairy breeds using whole-genome sequence data from 200 animals. Bioinformatics analyses to search for CNV were carried out using four different but complementary tools and we validated a subset of the CNV by both in silico and experimental approaches. RESULTS: We report the identification and localization of 4178 putative deletion-only, duplication-only and CNV regions, which cover 6% of the bovine autosomal genome; they were validated by two in silico approaches and/or experimentally validated using array-based comparative genomic hybridization and single nucleotide polymorphism genotyping arrays. The size of these variants ranged from 334 bp to 7.7 Mb, with an average size of ~ 54 kb. Of these 4178 variants, 3940 were deletions, 67 were duplications and 171 corresponded to both deletions and duplications, which were defined as potential CNV regions. Gene content analysis revealed that, among these variants, 1100 deletions and duplications encompassed 1803 known genes, which affect a wide spectrum of molecular functions, and 1095 overlapped with known QTL regions. CONCLUSIONS: Our study is a large-scale survey of CNV in eight French dairy and beef breeds. These CNV will be useful to study the link between genetic variability and economically important traits, and to improve our knowledge on the genomic architecture of cattle.


Subject(s)
Cattle/genetics , DNA Copy Number Variations , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , Animals , Dairy Products/standards , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Red Meat/standards
17.
Genet Sel Evol ; 49(1): 68, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28923017

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) were performed at the sequence level to identify candidate mutations that affect the expression of six major milk proteins in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) dairy cattle. Whey protein (α-lactalbumin and ß-lactoglobulin) and casein (αs1, αs2, ß, and κ) contents were estimated by mid-infrared (MIR) spectrometry, with medium to high accuracy (0.59 ≤ R2 ≤ 0.92), for 848,068 test-day milk samples from 156,660 cows in the first three lactations. Milk composition was evaluated as average test-day measurements adjusted for environmental effects. Next, we genotyped a subset of 8080 cows (2967 MON, 2737 NOR, and 2306 HOL) with the BovineSNP50 Beadchip. For each breed, genotypes were first imputed to high-density (HD) using HD single nucleotide polymorphisms (SNPs) genotypes of 522 MON, 546 NOR, and 776 HOL bulls. The resulting HD SNP genotypes were subsequently imputed to the sequence level using 27 million high-quality sequence variants selected from Run4 of the 1000 Bull Genomes consortium (1147 bulls). Within-breed, multi-breed, and conditional GWAS were performed. RESULTS: Thirty-four distinct genomic regions were identified. Three regions on chromosomes 6, 11, and 20 had very significant effects on milk composition and were shared across the three breeds. Other significant effects, which partially overlapped across breeds, were found on almost all the autosomes. Multi-breed analyses provided a larger number of significant genomic regions with smaller confidence intervals than within-breed analyses. Combinations of within-breed, multi-breed, and conditional analyses led to the identification of putative causative variants in several candidate genes that presented significant protein-protein interactions enrichment, including those with previously described effects on milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) and those with effects reported for the first time here (ALPL, ANKH, PICALM). CONCLUSIONS: GWAS applied to fine-scale phenotypes, multiple breeds, and whole-genome sequences seems to be effective to identify candidate gene variants. However, although we identified functional links between some candidate genes and milk phenotypes, the causality between candidate variants and milk protein composition remains to be demonstrated. Nevertheless, the identification of potential causative mutations that underlie milk protein composition may have immediate applications for improvements in cheese-making.


Subject(s)
Breeding , Cattle/genetics , Genome-Wide Association Study , Lactation/genetics , Milk Proteins/genetics , Mutation/genetics , Animals , Female , Genetic Variation/genetics , Genome/genetics , Male , Milk/chemistry
18.
DNA Res ; 24(3): 221-233, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28338730

ABSTRACT

Bidirectional promoters are regulatory regions co-regulating the expression of two neighbouring genes organized in a head-to-head orientation. In recent years, these regulatory regions have been studied in many organisms; however, no investigation to date has been done to analyse the genetic variation of the activity of this type of promoter regions. In our study, we conducted an investigation to first identify bidirectional promoters sharing genes expressed in bovine Longissimus thoracis and then to find genetic variants affecting the activity of some of these bidirectional promoters. Combining bovine gene information and expression data obtained using RNA-Seq, we identified 120 putative bidirectional promoters active in bovine muscle. We experimentally validated in vitro 16 of these bidirectional promoters. Finally, using gene expression and whole-genome genotyping data, we explored the variability of the activity in muscle of the identified bidirectional promoters and discovered genetic variants affecting their activity. We found that the expression level of 77 genes is correlated with the activity of 12 bidirectional promoters. We also identified 57 single nucleotide polymorphisms associated with the activity of 5 bidirectional promoters. To our knowledge, our study is the first analysis in any species of the genetic variability of the activity of bidirectional promoters.


Subject(s)
Back Muscles/metabolism , Gene Expression Regulation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Proteins/genetics , Animals , Cattle , Gene Expression Profiling , Male , Pilot Projects
19.
Genet Sel Evol ; 48(1): 87, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27846802

ABSTRACT

BACKGROUND: In recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability. RESULTS: In this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data. CONCLUSIONS: To our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.


Subject(s)
Breeding , Genetic Variation , Genome , Polymorphism, Single Nucleotide , Animals , Cattle , Chromosome Mapping , Dairying , Female , Genotype , INDEL Mutation , Male , Mutation Rate , Phenotype , Red Meat
20.
Genet Sel Evol ; 48: 37, 2016 Apr 23.
Article in English | MEDLINE | ID: mdl-27107817

ABSTRACT

BACKGROUND: Studies to identify markers associated with beef tenderness have focused on Warner-Bratzler shear force (WBSF) but the interplay between the genes associated with WBSF has not been explored. We used the association weight matrix (AWM), a systems biology approach, to identify a set of interacting genes that are co-associated with tenderness and other meat quality traits, and shared across the Charolaise, Limousine and Blonde d'Aquitaine beef cattle breeds. RESULTS: Genome-wide association studies were performed using ~500K single nucleotide polymorphisms (SNPs) and 17 phenotypes measured on more than 1000 animals for each breed. First, this multi-trait approach was applied separately for each breed across 17 phenotypes and second, between- and across-breed comparisons at the AWM and functional levels were performed. Genetic heterogeneity was observed, and most of the variants that were associated with WBSF segregated within rather than across breeds. We identified 206 common candidate genes associated with WBSF across the three breeds. SNPs in these common genes explained between 28 and 30 % of the phenotypic variance for WBSF. A reduced number of common SNPs mapping to the 206 common genes were identified, suggesting that different mutations may target the same genes in a breed-specific manner. Therefore, it is likely that, depending on allele frequencies and linkage disequilibrium patterns, a SNP that is identified for one breed may not be informative for another unrelated breed. Well-known candidate genes affecting beef tenderness were identified. In addition, some of the 206 common genes are located within previously reported quantitative trait loci for WBSF in several cattle breeds. Moreover, the multi-breed co-association analysis detected new candidate genes, regulators and metabolic pathways that are likely involved in the determination of meat tenderness and other meat quality traits in beef cattle. CONCLUSIONS: Our results suggest that systems biology approaches that explore associations of correlated traits increase statistical power to identify candidate genes beyond the one-dimensional approach. Further studies on the 206 common genes, their pathways, regulators and interactions will expand our knowledge on the molecular basis of meat tenderness and could lead to the discovery of functional mutations useful for genomic selection in a multi-breed beef cattle context.


Subject(s)
Cattle/genetics , Genome-Wide Association Study/veterinary , Red Meat/analysis , Systems Biology , Animals , Breeding , France , Gene Frequency , Genomics , Genotype , Linkage Disequilibrium/genetics , Male , Mutation , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...