Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 9: 902159, 2022.
Article in English | MEDLINE | ID: mdl-36071938

ABSTRACT

Establishing the relationship between gut microbiota and host health has become a main target of research in the last decade. Human gut microbiota-associated animal models represent one alternative to human research, allowing for intervention studies to investigate causality. Recent cohort and in vitro studies proposed an altered gut microbiota and lactate metabolism with excessive H2 production as the main causes of infant colic. To evaluate H2 production by infant gut microbiota and to test modulation of gut colonizer lactose- and lactate-utilizer non-H2-producer, Cutibacterium avidum P279, we established and validated a gnotobiotic model using young germ-free rats inoculated with fecal slurries from infants younger than 3 months. Here, we show that infant microbiota-associated (IMA) rats inoculated with fresh feces from healthy (n = 2) and colic infants (n = 2) and fed infant formula acquired and maintained similar quantitative and qualitative fecal microbiota composition compared to the individual donor's profile. We observed that IMA rats excreted high levels of H2, which were linked to a high abundance of lactate-utilizer H2-producer Veillonella. Supplementation of C. avidum P279 to colic IMA rats reduced H2 levels compared to animals receiving a placebo. Taken together, we report high H2 production by infant gut microbiota, which might be a contributing factor for infant colic, and suggest the potential of C. avidum P279 in reducing the abdominal H2 production, bloating, and pain associated with excessive crying in colic infants.

2.
mSystems ; 4(4)2019 May 28.
Article in English | MEDLINE | ID: mdl-31138674

ABSTRACT

The metabolism of lactate impacts infant gut health and may lead to acute accumulation of lactate and/or H2 associated with pain and crying of colicky infants. Because gut microbiota studies are limited due to ethical and safety concerns, in vitro fermentation models were developed as powerful tools to assess effects of environmental conditions on the gut microbiota. In this study, we established a continuous colonic fermentation model (PolyFermS), inoculated with immobilized fecal microbiota and mimicking the proximal colon of 2-month-old infants. We investigated the effects of pH and retention time (RT) on lactate metabolism and of lactate-utilizing bacteria (LUB) exhibiting little or no H2 production. We observed that a drop in pH from 6.0 to 5.0 increased the number of lactate-producing bacteria (LPB) and decreased LUB concomitantly with lactate accumulation. Increasing RT from 5 to 10 h at pH 5.0 resulted in complete lactate consumption associated with increased LUB. Supplementation with dl-lactate (60 mM) to mimic lactate accumulation promoted propionate and butyrate production with no effect on acetate production. We further demonstrated that lactate-utilizing Propionibacterium avidum was able to colonize the reactors 4 days after spiking, suggesting its ability to compete with other lactate-utilizing bacteria producing H2 In conclusion, we showed that PolyFermS is a suitable model for mimicking young infant colonic microbiota. We report for the first time pH and RT as strong drivers for composition and metabolic activity of infant gut microbiota, especially for the metabolism of lactate, which is a key intermediate product for ecology and infant health.IMPORTANCE The metabolism of lactate is important for infant gut health and may lead to acute lactate and/or H2 accumulation, pain, and crying as observed in colicky infants. Functional human studies often faced ethical challenges due to invasive medical procedures; thus, in this study, we implemented PolyFermS fermentation models to mimic the infant proximal colon, which were inoculated with immobilized fecal microbiota of two 2-month-old infants. We investigated the impact of pH, retention time, and accumulation of dl-lactate on microbiota composition and metabolic activity. We found that a drop in pH from 6.0 to 5.0 led to increased LPB and decreased LUB concomitantly with lactate accumulation. Increasing the RT resulted in complete lactate consumption associated with increased LUB. Our data highlight for the first time the impact of key abiotic factors on the metabolism of lactate, which is an important intermediate product for ecology and infant health.

3.
Syst Appl Microbiol ; 42(4): 506-516, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31128887

ABSTRACT

The infant gut harbors a diverse microbial community consisting of several taxa whose persistence depends on adaptation to the ecosystem. In healthy breast-fed infants, the gut microbiota is dominated by Bifidobacterium spp.. Cutibacterium avidum is among the initial colonizers, however, the phylogenetic relationship of infant fecal isolates to isolates from other body sites, and C. avidum carbon utilization related to the infant gut ecosystem have been little investigated. In this study, we investigated the phylogenetic and phenotypic diversity of 28 C. avidum strains, including 16 strains isolated from feces of healthy infants. We investigated the in vitro capacity of C. avidum infant isolates to degrade and consume carbon sources present in the infant gut, and metabolic interactions of C. avidum with infant associated Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum. Isolates of C. avidum showed genetic heterogeneity. C. avidum consumed d- and l-lactate, glycerol, glucose, galactose, N-acetyl-d-glucosamine and maltodextrins. Alpha-galactosidase- and ß-glucuronidase activity were a trait of a group of non-hemolytic strains, which were mostly isolated from infant feces. Beta-glucuronidase activity correlated with the ability to ferment glucuronic acid. Co-cultivation with B. infantis and B. bifidum enhanced C. avidum growth and production of propionate, confirming metabolic cross-feeding. This study highlights the phylogenetic and functional diversity of C. avidum, their role as secondary glycan degraders and propionate producers, and suggests adaptation of a subpopulation to the infant gut.


Subject(s)
Adaptation, Physiological , Gastrointestinal Microbiome , Propionibacteriaceae/genetics , Propionibacteriaceae/metabolism , Bifidobacterium bifidum/growth & development , Bifidobacterium bifidum/metabolism , Bifidobacterium longum subspecies infantis/growth & development , Bifidobacterium longum subspecies infantis/metabolism , Feces/microbiology , Gastrointestinal Microbiome/genetics , Genes, Bacterial/genetics , Genetic Variation , Genome, Bacterial/genetics , Humans , Infant , Microbial Interactions , Milk, Human/metabolism , Phylogeny , Polysaccharides/metabolism , Propionates/metabolism , Propionibacteriaceae/classification , Propionibacteriaceae/growth & development , Sequence Analysis, DNA
4.
FEMS Microbiol Ecol ; 95(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30388209

ABSTRACT

Establishment of the infant gut microbiota affects gut maturation and influences long-term health. Cutibacterium (formerly Propionibacterium) have been identified as early colonizers, but little is known about their function. Using a cultivation-dependent and -independent approach, we determined Cutibacterium prevalence, diversity and functional potential. In feces from a Swiss infant cohort (n = 38), prevalence of Propionibacterium/Cutibacterium decreased from 84% at 2 weeks, to 65% at 4 weeks, 47% at 8 weeks and 41% at 12 weeks of age. Abundance varied among individuals, and persistence depended on the colonization levels at 2 weeks. Cutibacterium isolates (n = 87) were obtained from 10 infants from a smaller cohort (n = 12); restriction fragment length polymorphism clustered isolates in four groups, and all identified as Cutibacterium avidum. Colonization potential and metabolic effects of C. avidum addition were tested in an in vitro continuous intestinal fermentation model mimicking infant proximal colon conditions. Cutibacterium avidum spiked daily at 108 or 109 cells mL-1 colonized, decreased formate and persisted during the washout period. Significant correlations were observed between Propionibacterium/Cutibacterium and lactate-producers and protein-degraders in both reactors and infant feces. Our findings highlight the natural presence of C. avidum and its role as a lactate-consumer and propionate-producer in infants younger than 3 months.


Subject(s)
Gastrointestinal Microbiome , Intestines/microbiology , Propionibacterium/growth & development , Feces/microbiology , Female , Fermentation , Humans , Infant , Male , Propionibacterium/genetics , Propionibacterium/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...