Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
J Neuroeng Rehabil ; 21(1): 94, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840208

ABSTRACT

BACKGROUND: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue. This study explored the relationships between gait characteristics derived from an inertial measurement unit (IMU) and patient-reported fatigue in the IDEA-FAST feasibility study. METHODS: Participants with IMIDs and NDDs (Parkinson's disease (PD), Huntington's disease (HD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (PSS), and inflammatory bowel disease (IBD)) wore a lower-back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physical fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using a generalised linear mixed-effects model (GLMM) and binary classification with machine learning. RESULTS: Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, the variability of the non-walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% (precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, and gait rhythm were the most interesting characteristics for future analysis. CONCLUSIONS: Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait measures and abnormal fatigue. However, factors such as the COVID-19 pandemic may have impacted gait behaviours. Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait and abnormal fatigue.


Subject(s)
Fatigue , Feasibility Studies , Gait , Mental Fatigue , Neurodegenerative Diseases , Walking , Humans , Male , Female , Middle Aged , Fatigue/diagnosis , Fatigue/physiopathology , Fatigue/etiology , Walking/physiology , Aged , Mental Fatigue/physiopathology , Mental Fatigue/diagnosis , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/diagnosis , Gait/physiology , Wearable Electronic Devices , Immune System Diseases/complications , Immune System Diseases/diagnosis , Adult , Accelerometry/instrumentation , Accelerometry/methods
2.
JMIR Aging ; 7: e53020, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38842168

ABSTRACT

Background: Walking is important for maintaining physical and mental well-being in aged residential care (ARC). Walking behaviors are not well characterized in ARC due to inconsistencies in assessment methods and metrics as well as limited research regarding the impact of care environment, cognition, or physical function on these behaviors. It is recommended that walking behaviors in ARC are assessed using validated digital methods that can capture low volumes of walking activity. Objective: This study aims to characterize and compare accelerometry-derived walking behaviors in ARC residents across different care levels, cognitive abilities, and physical capacities. Methods: A total of 306 ARC residents were recruited from the Staying UpRight randomized controlled trial from 3 care levels: rest home (n=164), hospital (n=117), and dementia care (n=25). Participants' cognitive status was classified as mild (n=87), moderate (n=128), or severe impairment (n=61); physical function was classified as high-moderate (n=74) and low-very low (n=222) using the Montreal Cognitive Assessment and the Short Physical Performance Battery cutoff scores, respectively. To assess walking, participants wore an accelerometer (Axivity AX3; dimensions: 23×32.5×7.6 mm; weight: 11 g; sampling rate: 100 Hz; range: ±8 g; and memory: 512 MB) on their lower back for 7 days. Outcomes included volume (ie, daily time spent walking, steps, and bouts), pattern (ie, mean walking bout duration and alpha), and variability (of bout length) of walking. Analysis of covariance was used to assess differences in walking behaviors between groups categorized by level of care, cognition, or physical function while controlling for age and sex. Tukey honest significant difference tests for multiple comparisons were used to determine where significant differences occurred. The effect sizes of group differences were calculated using Hedges g (0.2-0.4: small, 0.5-0.7: medium, and 0.8: large). Results: Dementia care residents showed greater volumes of walking (P<.001; Hedges g=1.0-2.0), with longer (P<.001; Hedges g=0.7-0.8), more variable (P=.008 vs hospital; P<.001 vs rest home; Hedges g=0.6-0.9) bouts compared to other care levels with a lower alpha score (vs hospital: P<.001; Hedges g=0.9, vs rest home: P=.004; Hedges g=0.8). Residents with severe cognitive impairment took longer (P<.001; Hedges g=0.5-0.6), more variable (P<.001; Hedges g=0.4-0.6) bouts, compared to those with mild and moderate cognitive impairment. Residents with low-very low physical function had lower walking volumes (total walk time and bouts per day: P<.001; steps per day: P=.005; Hedges g=0.4-0.5) and higher variability (P=.04; Hedges g=0.2) compared to those with high-moderate capacity. Conclusions: ARC residents across different levels of care, cognition, and physical function demonstrate different walking behaviors. However, ARC residents often present with varying levels of both cognitive and physical abilities, reflecting their complex multimorbid nature, which should be considered in further work. This work has demonstrated the importance of considering a nuanced framework of digital outcomes relating to volume, pattern, and variability of walking behaviors among ARC residents.


Subject(s)
Accelerometry , Cognition , Walking , Humans , Male , Female , Cross-Sectional Studies , Walking/physiology , Aged, 80 and over , Cognition/physiology , Aged , Homes for the Aged
4.
JMIR Form Res ; 8: e50035, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691395

ABSTRACT

BACKGROUND: Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. OBJECTIVE: The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back-worn inertial sensors. METHODS: Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back-worn inertial sensors. RESULTS: The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. CONCLUSIONS: Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. TRIAL REGISTRATION: ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2021-050785.

5.
NPJ Digit Med ; 7(1): 142, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796519

ABSTRACT

Step length is an important diagnostic and prognostic measure of health and disease. Wearable devices can estimate step length continuously (e.g., in clinic or real-world settings), however, the accuracy of current estimation methods is not yet optimal. We developed machine-learning models to estimate step length based on data derived from a single lower-back inertial measurement unit worn by 472 young and older adults with different neurological conditions, including Parkinson's disease and healthy controls. Studying more than 80,000 steps, the best model showed high accuracy for a single step (root mean square error, RMSE = 6.08 cm, ICC(2,1) = 0.89) and higher accuracy when averaged over ten consecutive steps (RMSE = 4.79 cm, ICC(2,1) = 0.93), successfully reaching the predefined goal of an RMSE below 5 cm (often considered the minimal-clinically-important-difference). Combining machine-learning with a single, wearable sensor generates accurate step length measures, even in patients with neurologic disease. Additional research may be needed to further reduce the errors in certain conditions.

6.
Res Sq ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38559043

ABSTRACT

Progressive gait impairment is common in aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1,000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised gait detection method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults.

7.
PLoS One ; 19(3): e0300351, 2024.
Article in English | MEDLINE | ID: mdl-38547229

ABSTRACT

BACKGROUND: Physical limitations are frequent and debilitating after sarcoma treatment. Markerless motion capture (MMC) could measure these limitations. Historically expensive cumbersome systems have posed barriers to clinical translation. RESEARCH QUESTION: Can inexpensive MMC [using Microsoft KinectTM] assess functional outcomes after sarcoma surgery, discriminate between tumour sub-groups and agree with existing assessments? METHODS: Walking, unilateral stance and kneeling were measured in a cross-sectional study of patients with lower extremity sarcomas using MMC and standard video. Summary measures of temporal, balance, gait and movement velocity were derived. Feasibility and early indicators of validity of MMC were explored by comparing MMC measures i) between tumour sub-groups; ii) against video and iii) with established sarcoma tools [Toronto Extremity Salvage Score (TESS)), Musculoskeletal Tumour Rating System (MSTS), Quality of life-cancer survivors (QoL-CS)]. Statistical analysis was conducted using SPSS v19. Tumour sub-groups were compared using Mann-Whitney U tests, MMC was compared to existing sarcoma measures using correlations and with video using Intraclass correlation coefficient agreement. RESULTS: Thirty-four adults of mean age 43 (minimum value-maximum value 19-89) years with musculoskeletal tumours in the femur (19), pelvis/hip (3), tibia (9), or ankle/foot (3) participated; 27 had limb sparing surgery and 7 amputation. MMC was well-tolerated and feasible to deliver. MMC discriminated between surgery groups for balance (p<0.05*), agreed with video for kneeling times [ICC = 0.742; p = 0.001*] and showed moderate relationships between MSTS and gait (p = 0.022*, r = -0.416); TESS and temporal outcomes (p = 0.016* and r = -0.0557*), movement velocity (p = 0.021*, r = -0.541); QoL-CS and balance (p = 0.027*, r = 0.441) [* = statistical significance]. As MMC uncovered important relationships between outcomes, it gave an insight into how functional impairments, balance, gait, disabilities and quality of life (QoL) are associated with each other. This gives an insight into mechanisms of poor outcomes, producing clinically useful data i.e. data which can inform clinical practice and guide the delivery of targeted rehabilitation. For example, patients presenting with poor balance in various activities can be prescribed with balance rehabilitation and those with difficulty in movements or activity transitions can be managed with exercises and training to improve the quality and efficiency of the movement. SIGNIFICANCE: In this first study world-wide, investigating the use of MMC after sarcoma surgery, MMC was found to be acceptable and feasible to assess functional outcomes in this cancer population. MMC demonstrated early indicators of validity and also provided new knowledge that functional impairments are related to balance during unilateral stance and kneeling, gait and movement velocity during kneeling and these outcomes in turn are related to disabilities and QoL. This highlighted important relationships between different functional outcomes and QoL, providing valuable information for delivering personalised rehabilitation. After completing future validation work in a larger study, this approach can offer promise in clinical settings. Low-cost MMC shows promise in assessing patient's impairments in the hospitals or their homes and guiding clinical management and targeted rehabilitation based on novel MMC outcomes affected, therefore providing an opportunity for delivering personalised exercise programmes and physiotherapy care delivery for this rare cancer.


Subject(s)
Bone Neoplasms , Musculoskeletal Diseases , Sarcoma , Soft Tissue Neoplasms , Adult , Humans , Quality of Life , Motion Capture , Cross-Sectional Studies , Feasibility Studies , Bone Neoplasms/surgery , Lower Extremity/surgery , Sarcoma/surgery
8.
Neuroimage ; 288: 120531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331333

ABSTRACT

Gait is an excellent indicator of physical, emotional, and mental health. Previous studies have shown that gait impairments in ageing are common, but the neural basis of these impairments are unclear. Existing methodologies are suboptimal and novel paradigms capable of capturing neural activation related to real walking are needed. In this study, we used a hybrid PET/MR system and measured glucose metabolism related to both walking and standing with a dual-injection paradigm in a single study session. For this study, 15 healthy older adults (10 females, age range: 60.5-70.7 years) with normal cognition were recruited from the community. Each participant received an intravenous injection of [18F]-2-fluoro-2-deoxyglucose (FDG) before engaging in two distinct tasks, a static postural control task (standing) and a walking task. After each task, participants were imaged. To discern independent neural functions related to walking compared to standing, we applied a bespoke dose correction to remove the residual 18F signal of the first scan (PETSTAND) from the second scan (PETWALK) and proportional scaling to the global mean, cerebellum, or white matter (WM). Whole-brain differences in walking-elicited neural activity measured with FDG-PET were assessed using a one-sample t-test. In this study, we show that a dual-injection paradigm in healthy older adults is feasible with biologically valid findings. Our results with a dose correction and scaling to the global mean showed that walking, compared to standing, increased glucose consumption in the cuneus (Z = 7.03), the temporal gyrus (Z = 6.91) and the orbital frontal cortex (Z = 6.71). Subcortically, we observed increased glucose metabolism in the supraspinal locomotor network including the thalamus (Z = 6.55), cerebellar vermis and the brainstem (pedunculopontine/mesencephalic locomotor region). Exploratory analyses using proportional scaling to the cerebellum and WM returned similar findings. Here, we have established the feasibility and tolerability of a novel method capable of capturing neural activations related to actual walking and extended previous knowledge including the recruitment of brain regions involved in sensory processing. Our paradigm could be used to explore pathological alterations in various gait disorders.


Subject(s)
Fluorodeoxyglucose F18 , Neuroanatomy , Female , Humans , Aged , Middle Aged , Gait/physiology , Walking/physiology , Positron-Emission Tomography/methods , Glucose/metabolism
9.
BMJ Open ; 14(2): e076518, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38417968

ABSTRACT

INTRODUCTION: Sarcopenia is the age-associated loss of muscle mass and strength. Nicotinamide adenine dinucleotide (NAD) plays a central role in both mitochondrial function and cellular ageing processes implicated in sarcopenia. NAD concentrations are low in older people with sarcopenia, and increasing skeletal muscle NAD concentrations may offer a novel therapy for this condition. Acipimox is a licensed lipid-lowering agent known to act as an NAD precursor. This open-label, uncontrolled, before-and-after proof-of-concept experimental medicine study will test whether daily supplementation with acipimox improves skeletal muscle NAD concentrations. METHODS AND ANALYSIS: Sixteen participants aged 65 and over with probable sarcopenia will receive acipimox 250 mg and aspirin 75 mg orally daily for 4 weeks, with the frequency of acipimox administration being dependent on renal function. Muscle biopsy of the vastus lateralis and MRI scanning of the lower leg will be performed at baseline before starting acipimox and after 3 weeks of treatment. Adverse events will be recorded for the duration of the trial. The primary outcome, analysed in a per-protocol population, is the change in skeletal muscle NAD concentration between baseline and follow-up. Secondary outcomes include changes in phosphocreatine recovery rate by 31P magnetic resonance spectroscopy, changes in physical performance and daily activity (handgrip strength, 4 m walk and 7-day accelerometry), changes in skeletal muscle mitochondrial respiratory function, changes in skeletal muscle mitochondrial DNA copy number and changes in NAD concentrations in whole blood as a putative biomarker for future participant selection. ETHICS AND DISSEMINATION: The trial is approved by the UK Medicines and Healthcare Products Regulatory Agency (EuDRACT 2021-000993-28) and UK Health Research Authority and Northeast - Tyne and Wear South Research Ethics Committee (IRAS 293565). Results will be made available to participants, their families, patients with sarcopenia, the public, regional and national clinical teams, and the international scientific community. PROTOCOL: Acipimox feasibility study Clinical Trial Protocol V.2 2/11/21. TRIAL REGISTRATION NUMBER: The ISRCTN trial database (ISRCTN87404878).


Subject(s)
Pyrazines , Sarcopenia , Humans , Aged , Sarcopenia/drug therapy , Independent Living , Hand Strength , NAD , Feasibility Studies , Muscle, Skeletal
10.
Sci Rep ; 14(1): 1754, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243008

ABSTRACT

This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987.


Subject(s)
Walking Speed , Wearable Electronic Devices , Humans , Aged , Gait , Walking , Research Design
11.
J Am Med Dir Assoc ; 25(2): 201-208.e6, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042173

ABSTRACT

OBJECTIVES: To investigate the effect of an exercise program on falls in intermediate and high-level long-term care (LTC) residents and to determine whether adherence, physical capacity, and cognition modified outcomes. DESIGN: Randomized controlled trial. SETTING AND PARTICIPANTS: Residents (n = 520, aged 84 ± 8 years) from 25 LTC facilities in New Zealand. METHODS: Individually randomized to Staying UpRight, a physical therapist-led, balance and strength group exercise program delivered for 1 hour, twice weekly over 12 months. The control arm was dose-matched and used seated activities with no resistance. Falls were collected using routinely collected incident reports. RESULTS: Baseline fall rates were 4.1 and 3.3 falls per person-year (ppy) for intervention and control groups. Fall rates over the trial period were 4.1 and 4.3 falls ppy respectively [P = .89, incidence rate ratio (IRR) 0.98, 95% CI 0.76, 1.27]. Over the 12-month trial period, 74% fell, with 63% of intervention and 61% of the control group falling more than once. Risk of falls (P = .56, hazard ratio 1.08, 95% CI 0.85, 1.36) and repeat falling or fallers sustaining an injury at trial completion were similar between groups. Fall rates per 100 hours walked did not differ between groups (P = .42, IRR 1.15, 95% CI 0.81, 1.63). Program delivery was suspended several times because of COVID-19, reducing average attendance to 26 hours over 12 months. Subgroup analyses of falls outcomes for those with the highest attendance (≥50% of classes), better physical capacity (Short Physical Performance Battery scores ≥8/12), or cognition (Montreal Cognitive Assessment scores ≥ 18/30) showed no significant impact of the program. CONCLUSIONS/IMPLICATIONS: In intermediate and high-level care residents, the Staying UpRight program did not reduce fall rates or risk compared with a control activity, independent of age, sex, or care level. Inadequate exercise dose because of COVID-19-related interruptions to intervention delivery likely contributed to the null result.


Subject(s)
Accidental Falls , COVID-19 , Aged , Humans , Accidental Falls/prevention & control , Exercise , Exercise Therapy , Long-Term Care , Aged, 80 and over
12.
Mov Disord ; 39(2): 433-438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38140767

ABSTRACT

BACKGROUND: Clinical trials of disease-modifying therapies in PD require valid and responsive primary outcome measures that are relevant to patients. OBJECTIVES: The objective is to select a patient-centered primary outcome measure for disease-modification trials over three or more years. METHODS: Experts in Parkinson's disease (PD), statistics, and health economics and patient and public involvement and engagement (PPIE) representatives reviewed and discussed potential outcome measures. A larger PPIE group provided input on their key considerations for such an endpoint. Feasibility, clinimetric properties, and relevance to patients were assessed and synthesized. RESULTS: Although initial considerations favored the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III in Off, feasibility, PPIE input, and clinimetric properties supported the MDS-UPDRS Part II. However, PPIE input also highlighted the importance of nonmotor symptoms, especially in the longer term, leading to the selection of the MDS-UPDRS Parts I + II sum score. CONCLUSIONS: The MDS-UPDRS Parts I + II sum score was chosen as the primary outcome for large 3-year disease-modification trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/diagnosis , Severity of Illness Index , Mental Status and Dementia Tests , Societies, Medical
13.
Mov Disord ; 39(2): 328-338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151859

ABSTRACT

BACKGROUND: Real-world monitoring using wearable sensors has enormous potential for assessing disease severity and symptoms among persons with Parkinson's disease (PD). Many distinct features can be extracted, reflecting multiple mobility domains. However, it is unclear which digital measures are related to PD severity and are sensitive to disease progression. OBJECTIVES: The aim was to identify real-world mobility measures that reflect PD severity and show discriminant ability and sensitivity to disease progression, compared to the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scale. METHODS: Multicenter real-world continuous (24/7) digital mobility data from 587 persons with PD and 68 matched healthy controls were collected using an accelerometer adhered to the lower back. Machine learning feature selection and regression algorithms evaluated associations of the digital measures using the MDS-UPDRS (I-III). Binary logistic regression assessed discriminatory value using controls, and longitudinal observational data from a subgroup (n = 33) evaluated sensitivity to change over time. RESULTS: Digital measures were only moderately correlated with the MDS-UPDRS (part II-r = 0.60 and parts I and III-r = 0.50). Most associated measures reflected activity quantity and distribution patterns. A model with 14 digital measures accurately distinguished recently diagnosed persons with PD from healthy controls (81.1%, area under the curve: 0.87); digital measures showed larger effect sizes (Cohen's d: [0.19-0.66]), for change over time than any of the MDS-UPDRS parts (Cohen's d: [0.04-0.12]). CONCLUSIONS: Real-world mobility measures are moderately associated with clinical assessments, suggesting that they capture different aspects of motor capacity and function. Digital mobility measures are sensitive to early-stage disease and to disease progression, to a larger degree than conventional clinical assessments, demonstrating their utility, primarily for clinical trials but ultimately also for clinical care. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Mental Status and Dementia Tests , Logistic Models , Severity of Illness Index , Disease Progression
14.
Article in English | MEDLINE | ID: mdl-38083383

ABSTRACT

Current assessments of fatigue and sleepiness rely on patient reported outcomes (PROs), which are subjective and prone to recall bias. The current study investigated the use of gait variability in the "real world" to identify patient fatigue and daytime sleepiness. Inertial measurement units were worn on the lower backs of 159 participants (117 with six different immune and neurodegenerative disorders and 42 healthy controls) for up to 20 days, whom completed regular PROs. To address walking bouts that were short and sparse, four feature groups were considered: sequence-independent variability (SIV), sequence-dependant variability (SDV), padded SDV (PSDV), and typical gait variability (TGV) measures. These gait variability measures were extracted from step, stride, stance, and swing time, step length, and step velocity. These different approaches were compared using correlations and four machine learning classifiers to separate low/high fatigue and sleepiness.Most balanced accuracies were above 50%, the highest was 57.04% from TGV measures. The strongest correlation was 0.262 from an SDV feature against sleepiness. Overall, TGV measures had lower correlations and classification accuracies.Identifying fatigue or sleepiness from gait variability is extremely complex and requires more investigation with a larger data set, but these measures have shown performances that could contribute to a larger feature set.Clinical relevance- Gait variability has been repeatedly used to assess fatigue in the lab. The current study, however, explores gait variability for fatigue and daytime sleepiness in real-world scenarios with multiple gait-impacted disorders.


Subject(s)
Disorders of Excessive Somnolence , Fatigue , Gait , Immune System Diseases , Neurodegenerative Diseases , Sleepiness , Humans , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/etiology , Disorders of Excessive Somnolence/physiopathology , Fatigue/diagnosis , Fatigue/etiology , Fatigue/physiopathology , Gait/physiology , Immune System Diseases/complications , Immune System Diseases/physiopathology , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/physiopathology , Sleepiness/physiology
15.
Clin Med (Lond) ; 23(6): 611-614, 2023 11.
Article in English | MEDLINE | ID: mdl-38065606

ABSTRACT

High-quality care for older people is best delivered by multidisciplinary teams involving a range of professions. Similarly, if research evidence is to effectively inform practice, it needs to be designed and executed by teams that are both multidisciplinary and multiprofessional. Here, we summarise the discussions from a 1-day workshop convened by the National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre in Spring 2021, which focussed on multidisciplinary academic teams. Barriers to success include small numbers of clinical academic researchers across all professions focussing on older people, and lack of career pathways, role models and support for non-medical clinical researchers. The workshop identified strengths in the tradition of multidisciplinary working in the care of older people, research questions that lend themselves naturally to multidisciplinary working, increasing interest from funders in multidisciplinary research, and untapped opportunities for greater commercial engagement. Initiatives to improve engagement of students and trainees, mentorship, career pathways, networking across research centres and possibly developing a national School of Older People's Care Research are all ways that we can ensure the growth of multidisciplinary research to best serve older people's health and social care in the future.


Subject(s)
Biomedical Research , Geriatrics , Humans , Aged , Quality of Health Care , Patient Care Team
16.
Front Neurol ; 14: 1247532, 2023.
Article in English | MEDLINE | ID: mdl-37909030

ABSTRACT

Introduction: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of -0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, -0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.

17.
Sensors (Basel) ; 23(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37960674

ABSTRACT

Accurate and reliable measurement of real-world walking activity is clinically relevant, particularly for people with mobility difficulties. Insights on walking can help understand mobility function, disease progression, and fall risks. People living in long-term residential care environments have heterogeneous and often pathological walking patterns, making it difficult for conventional algorithms paired with wearable sensors to detect their walking activity. We designed two walking bout detection algorithms for people living in long-term residential care. Both algorithms used thresholds on the magnitude of acceleration from a 3-axis accelerometer on the lower back to classify data as "walking" or "non-walking". One algorithm had generic thresholds, whereas the other used personalized thresholds. To validate and evaluate the algorithms, we compared the classifications of walking/non-walking from our algorithms to the real-time research assistant annotated labels and the classification output from an algorithm validated on a healthy population. Both the generic and personalized algorithms had acceptable accuracy (0.83 and 0.82, respectively). The personalized algorithm showed the highest specificity (0.84) of all tested algorithms, meaning it was the best suited to determine input data for gait characteristic extraction. The developed algorithms were almost 60% quicker than the previously developed algorithms, suggesting they are adaptable for real-time processing.


Subject(s)
Gait , Walking , Humans , Algorithms , Acceleration , Accelerometry
18.
J Med Internet Res ; 25: e44206, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889531

ABSTRACT

Although the value of patient and public involvement and engagement (PPIE) activities in the development of new interventions and tools is well known, little guidance exists on how to perform these activities in a meaningful way. This is particularly true within large research consortia that target multiple objectives, include multiple patient groups, and work across many countries. Without clear guidance, there is a risk that PPIE may not capture patient opinions and needs correctly, thereby reducing the usefulness and effectiveness of new tools. Mobilise-D is an example of a large research consortium that aims to develop new digital outcome measures for real-world walking in 4 patient cohorts. Mobility is an important indicator of physical health. As such, there is potential clinical value in being able to accurately measure a person's mobility in their daily life environment to help researchers and clinicians better track changes and patterns in a person's daily life and activities. To achieve this, there is a need to create new ways of measuring walking. Recent advancements in digital technology help researchers meet this need. However, before any new measure can be used, researchers, health care professionals, and regulators need to know that the digital method is accurate and both accepted by and produces meaningful outcomes for patients and clinicians. Therefore, this paper outlines how PPIE structures were developed in the Mobilise-D consortium, providing details about the steps taken to implement PPIE, the experiences PPIE contributors had within this process, the lessons learned from the experiences, and recommendations for others who may want to do similar work in the future. The work outlined in this paper provided the Mobilise-D consortium with a foundation from which future PPIE tasks can be created and managed with clearly defined collaboration between researchers and patient representatives across Europe. This paper provides guidance on the work required to set up PPIE structures within a large consortium to promote and support the creation of meaningful and efficient PPIE related to the development of digital mobility outcomes.


Subject(s)
Digital Technology , Patient Participation , Humans , Patients , Outcome Assessment, Health Care , Europe
20.
BMJ Open ; 13(9): e073388, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666560

ABSTRACT

INTRODUCTION: In people with Parkinson's (PwP) impaired mobility is associated with an increased falls risk. To improve mobility, dopaminergic medication is typically prescribed, but complex medication regimens result in suboptimal adherence. Exploring medication adherence and its impact on mobility in PwP will provide essential insights to optimise medication regimens and improve mobility. However, this is typically assessed in controlled environments, during one-off clinical assessments. Digital health technology (DHT) presents a means to overcome this, by continuously and remotely monitoring mobility and medication adherence. This study aims to use a novel DHT system (DHTS) (comprising of a smartphone, smartwatch and inertial measurement unit (IMU)) to assess self-reported medication adherence, and its impact on digital mobility outcomes (DMOs) in PwP. METHODS AND ANALYSIS: This single-centre, UK-based study, will recruit 55 participants with Parkinson's. Participants will complete a range of clinical, and physical assessments. Participants will interact with a DHTS over 7 days, to assess self-reported medication adherence, and monitor mobility and contextual factors in the real world. Participants will complete a motor complications diary (ON-OFF-Dyskinesia) throughout the monitoring period and, at the end, a questionnaire and series of open-text questions to evaluate DHTS usability. Feasibility of the DHTS and the motor complications diary will be assessed. Validated algorithms will quantify DMOs from IMU walking activity. Time series modelling and deep learning techniques will model and predict DMO response to medication and effects of contextual factors. This study will provide essential insights into medication adherence and its effect on real-world mobility in PwP, providing insights to optimise medication regimens. ETHICS AND DISSEMINATION: Ethical approval was granted by London-142 Westminster Research Ethics Committee (REC: 21/PR/0469), protocol V.2.4. Results will be published in peer-reviewed journals. All participants will provide written, informed consent. TRIAL REGISTRATION NUMBER: ISRCTN13156149.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Technology , Algorithms , Biomedical Technology , Medication Adherence , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...