Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
World J Urol ; 39(9): 3273-3279, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33471165

ABSTRACT

PURPOSE: To evaluate the Prostate Health Index (PHI) density (PHID) in direct comparison with PHI in a prospective large cohort. METHODS: PHID values were calculated from prostate-specific antigen (PSA), free PSA and [- 2]proPSA and prostate volume. The 1057 patients included 552 men with prostate cancer (PCa) and 505 with no evidence of malignancy (NEM). In detail, 562 patients were biopsied at the Charité Hospital Berlin and 495 patients at the Sana Hospital Offenbach. All patients received systematic or magnetic resonance imaging (MRI)/ultrasound fusion-guided biopsies. The diagnostic accuracy was evaluated by receiver operating characteristic (ROC) curves comparing areas under the ROC-curves (AUC). The decision curve analysis (DCA) was performed with the MATLAB Neural Network Toolbox. RESULTS: PHID provided a significant larger AUC than PHI (0.835 vs. 0.801; p = 0.0013) in our prospective cohort of 1057 men from 2 centers. The DCA had a maximum net benefit of ~ 5% for PHID vs. PHI between 35 and 65% threshold probability. In those 698 men within the WHO-calibrated PSA grey-zone up to 8 ng/ml, PHID was also significantly better than PHI (AUC 0.819 vs. 0.789; p = 0.0219). But PHID was not different from PHI in the detection of significant PCa. CONCLUSIONS: Based on ROC analysis and DCA, PHID had an advantage in comparison with PHI alone to detect any PCa but PHI and PHID performed equal in detecting significant PCa.


Subject(s)
Prostate-Specific Antigen/blood , Prostate/pathology , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Aged , Humans , Male , Middle Aged , Prospective Studies , Prostatic Neoplasms/diagnosis , Tumor Burden
2.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105568

ABSTRACT

As new biomarkers, circular RNAs (circRNAs) have been largely unexplored in prostate cancer (PCa). Using an integrative approach, we aimed to evaluate the potential of circRNAs and their linear transcripts (linRNAs) to act as (i) diagnostic biomarkers for differentiation between normal and tumor tissue and (ii) prognostic biomarkers for the prediction of biochemical recurrence (BCR) after radical prostatectomy. In a first step, eight circRNAs (circATXN10, circCRIM1, circCSNK1G3, circGUCY1A2, circLPP, circNEAT1, circRHOBTB3, and circSTIL) were identified as differentially expressed via a genome-wide circRNA-based microarray analysis of six PCa samples. Additional bioinformatics and literature data were applied for this selection process. In total, 115 malignant PCa and 79 adjacent normal tissue samples were examined using robust RT-qPCR assays specifically established for the circRNAs and their linear counterparts. Their diagnostic and prognostic potential was evaluated using receiver operating characteristic curves, Cox regressions, decision curve analyses, and C-statistic calculations of prognostic indices. The combination of circATXN10 and linSTIL showed a high discriminative ability between malignant and adjacent normal tissue PCa. The combination of linGUCY1A2, linNEAT1, and linSTIL proved to be the best predictive RNA-signature for BCR. The combination of this RNA signature with five established reference models based on only clinicopathological factors resulted in an improved predictive accuracy for BCR in these models. This is an encouraging study for PCa to evaluate circRNAs and their linRNAs in an integrative approach, and the results showed their clinical potential in combination with standard clinicopathological variables.


Subject(s)
Biomarkers, Tumor/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Circular/genetics , Aged , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Oligonucleotide Array Sequence Analysis , Prognosis , Prostatectomy , Prostatic Neoplasms/surgery , RNA, Long Noncoding/genetics , ROC Curve , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
3.
Theranostics ; 10(20): 9268-9279, 2020.
Article in English | MEDLINE | ID: mdl-32802191

ABSTRACT

Background: Circular RNAs (circRNAs) are a new class of RNAs with medical significance. Compared to that of linear mRNA transcripts, the stability of circRNAs against degradation owing to their circular structure is considered advantageous for their use as biomarkers. As systematic studies on the stability of circRNAs depending on the RNA integrity, determined as RNA integrity number (RIN), in clinical tissue samples are lacking, we have investigated this aspect in the present study under model and clinical conditions. Methods: Total RNA isolated from kidney cancer tissue and cell lines (A-498 and HEK-293) with different RIN after thermal degradation was used in model experiments. Further, RNA isolated from kidney cancer and prostate cancer tissue collected under routine surgical conditions, representing clinical samples with RIN ranging from 2 to 9, were examined. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis of several circRNAs (circEGLN3, circRHOBTB3, circCSNK1G3, circRNA4, and circRNA9), their corresponding linear counterparts, tissue-specific reference genes, and three microRNAs (as controls) was performed. The quantification cycles were converted into relative quantities and normalized to the expression of specific reference genes for the corresponding tissue. The effect of RIN on the expression of different RNA entities was determined using linear regression analysis, and clinical samples were classified into two groups based on RIN greater or lesser than 6. Results: The results of model experiments and clinical sample analyses showed that all relative circRNA expression gradually decreased with reduction in RIN values. The adverse effect of RIN was partially compensated after normalizing the data and limiting the samples to only those with RIN values > 6. Conclusions: Our results suggested that circRNAs are not stable in clinical tissue samples, but are subjected to degradative processes similar to mRNAs. This has not been investigated extensively in circRNA expression studies, and hence must be considered in future for obtaining reliable circRNA expression data. This can be achieved by applying the principles commonly used in mRNA expression studies.


Subject(s)
Biomarkers/metabolism , RNA, Circular/genetics , Cell Line , Cell Line, Tumor , Gene Expression Profiling/methods , HEK293 Cells , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
4.
Cancers (Basel) ; 11(10)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31575051

ABSTRACT

Circular RNAs (circRNAs) may act as novel cancer biomarkers. However, a genome-wide evaluation of circRNAs in clear cell renal cell carcinoma (ccRCC) has yet to be conducted. Therefore, the objective of this study was to identify and validate circRNAs in ccRCC tissue with a focus to evaluate their potential as prognostic biomarkers. A genome-wide identification of circRNAs in total RNA extracted from ccRCC tissue samples was performed using microarray analysis. Three relevant differentially expressed circRNAs were selected (circEGLN3, circNOX4, and circRHOBTB3), their circular nature was experimentally confirmed, and their expression-along with that of their linear counterparts-was measured in 99 malignant and 85 adjacent normal tissue samples using specifically established RT-qPCR assays. The capacity of circRNAs to discriminate between malignant and adjacent normal tissue samples and their prognostic potential (with the endpoints cancer-specific, recurrence-free, and overall survival) after surgery were estimated by C-statistics, Kaplan-Meier method, univariate and multivariate Cox regression analysis, decision curve analysis, and Akaike and Bayesian information criteria. CircEGLN3 discriminated malignant from normal tissue with 97% accuracy. We generated a prognostic for the three endpoints by multivariate Cox regression analysis that included circEGLN3, circRHOBT3 and linRHOBTB3. The predictive outcome accuracy of the clinical models based on clinicopathological factors was improved in combination with this circRNA-based signature. Bootstrapping as well as Akaike and Bayesian information criteria confirmed the statistical significance and robustness of the combined models. Limitations of this study include its retrospective nature and the lack of external validation. The study demonstrated the promising potential of circRNAs as diagnostic and particularly prognostic biomarkers in ccRCC patients.

SELECTION OF CITATIONS
SEARCH DETAIL