Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cerebellum ; 23(2): 589-600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37382829

ABSTRACT

The cerebellum contributes to motor and higher-order control throughout neurodevelopment, with marked growth during childhood. Few studies have investigated differential associations of cerebellar morphometry with function in males and females. The present study examines sex differences in regional cerebellar gray matter volume (GMV) and the moderating effect of sex on the relationship between GMV and motor, cognitive, and emotional functions in a large cohort of typically developing (TD) children. Participants included 371 TD children (123 females, age 8-12 years). A convolutional neural network-based approach was employed for cerebellar parcellation. Volumes were harmonized using ComBat to adjust for hardware-induced variations. Regression analyses examined the effect of sex on GMV and whether sex moderated the relationship between GMV and motor, cognitive, and emotional functions. Males showed larger GMV in right lobules I-V, bilateral lobules VI, crus II/VIIb, and VIII, left lobule X, and vermis regions I-V and VIII-X. Greater motor function correlated with less vermis VI-VII GMV in females. Greater cognitive function correlated with greater left lobule VI GMV in females and less left lobule VI GMV in males. Finally, greater internalizing symptoms correlated with greater bilateral lobule IX GMV in females but less in males. These findings reveal sexually dimorphic patterns of cerebellar structure and associations with motor, cognitive, and emotional functions. Males generally show larger GMV than females. Larger GMV was associated with better cognitive functioning for females and better motor/emotional functioning for males.


Subject(s)
Gray Matter , Sex Characteristics , Humans , Male , Female , Child , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Cognition
2.
Autism Res ; 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33484109

ABSTRACT

This study examined whether disruptions in connectivity involving regions critical for learning, planning, and executing movements are relevant to core autism symptoms. Spatially constrained ICA was performed using resting-state fMRI from 419 children (autism spectrum disorder (ASD) = 105; typically developing (TD) = 314) to identify functional motor subdivisions. Comparing the spatial organization of each subdivision between groups, we found voxels that contributed significantly less to the right posterior cerebellar component in children with ASD versus TD (P <0.001). Next, we examined the effect of diagnosis on right posterior cerebellar connectivity with all other motor subdivisions. The model was significant (P = 0.014) revealing that right posterior cerebellar connectivity with bilateral dorsomedial primary motor cortex was, on average, stronger in children with ASD, while right posterior cerebellar connectivity with left-inferior parietal lobule (IPL), bilateral dorsolateral premotor cortex, and supplementary motor area was stronger in TD children (all P ≤0.02). We observed a diagnosis-by-connectivity interaction such that for children with ASD, elevated social-communicative and excessive repetitive-behavior symptom severity were both associated with right posterior cerebellar-left-IPL hypoconnectivity (P ≤0.001). Right posterior cerebellar and left-IPL are strongly implicated in visuomotor processing with dysfunction in this circuit possibly leading to anomalous development of skills, such as motor imitation, that are crucial for effective social-communication. LAY SUMMARY: This study examines whether communication between various brain regions involved in the control of movement are disrupted in children with autism spectrum disorder (ASD). We show communication between the right posterior cerebellum and left IPL, a circuit important for efficient visual-motor integration, is disrupted in children with ASD and associated with the severity of ASD symptoms. These results may explain observations of visual-motor integration impairments in children with ASD that are associated with ASD symptom severity.

3.
Article in English | MEDLINE | ID: mdl-33229247

ABSTRACT

BACKGROUND: Imitation deficits are prevalent in autism spectrum conditions (ASCs) and are associated with core autistic traits. Imitating others' actions is central to the development of social skills in typically developing populations, as it facilitates social learning and bond formation. We present a Computerized Assessment of Motor Imitation (CAMI) using a brief (1-min), highly engaging video game task. METHODS: Using Kinect Xbox motion tracking technology, we recorded 48 children (27 with ASCs, 21 typically developing) as they imitated a model's dance movements. We implemented an algorithm based on metric learning and dynamic time warping that automatically detects and evaluates the important joints and returns a score considering spatial position and timing differences between the child and the model. To establish construct validity and reliability, we compared imitation performance measured by the CAMI method to the more traditional human observation coding (HOC) method across repeated trials and two different movement sequences. RESULTS: Results revealed poorer imitation in children with ASCs than in typically developing children (ps < .005), with poorer imitation being associated with increased core autism symptoms. While strong correlations between the CAMI and HOC methods (rs = .69-.87) confirmed the CAMI's construct validity, CAMI scores classified the children into diagnostic groups better than the HOC scores (accuracyCAMI = 87.2%, accuracyHOC = 74.4%). Finally, by comparing repeated movement trials, we demonstrated high test-retest reliability of CAMI (rs = .73-.86). CONCLUSIONS: Findings support the CAMI as an objective, highly scalable, directly interpretable method for assessing motor imitation differences, providing a promising biomarker for defining biologically meaningful ASC subtypes and guiding intervention.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnosis , Autistic Disorder/diagnosis , Child , Humans , Imitative Behavior , Learning , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...