Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Biol ; 14(2): 230456, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412963

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are key effectors of the adaptive immune system that recognize and eliminate virally infected and cancerous cells. In naive CD8+ T cells, T-cell receptor (TCR) engagement drives a number of transcriptional, translational and proliferation changes over the course of hours and days leading to differentiation into CTLs. To gain a better insight into this mechanism, we compared the transcriptional profiles of naive CD8+ T cells to those of activated CTLs. To find new regulators of CTL function, we performed a selective clustered regularly interspaced short palindromic repeats (CRISPR) screen on upregulated genes and identified nuclear factor IL-3 (NFIL3) as a potential regulator of cytotoxicity. Although NFIL3 has established roles in several immune cells including natural killer, Treg, dendritic and CD4+ T cells, its function in CD8+ CTLs is less well understood. Using CRISPR/Cas9 editing, we found that removing NFIL3 in CTLs resulted in a marked decrease in cytotoxicity. We found that in CTLs lacking NFIL3 TCR-induced extracellular signal-regulated kinase phosphorylation, immune synapse formation and granule release were all intact while cytotoxicity was functionally impaired in vitro. Strikingly, NFIL3 controls the production of cytolytic proteins as well as effector cytokines. Thus, NFIL3 plays a cell intrinsic role in modulating cytolytic mechanisms in CTLs.


Subject(s)
CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Cytotoxic/metabolism , Interleukin-3/metabolism , Perforin/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
2.
Curr Opin Immunol ; 82: 102309, 2023 06.
Article in English | MEDLINE | ID: mdl-37011462

ABSTRACT

T cells recognize pathogenic antigens via the T-cell antigen receptor (TCR). This protein complex binds to antigen fragments on the surface of antigen-presenting cells. To understand how cellular activation can ensue rapidly from molecular recognition, the localization and distribution of the TCR on the surface of the resting T cell are of particular importance. Conflicting results regarding TCR distribution have emerged from recent studies using a range of imaging techniques, including total internal reflection and single-molecule localization microscopy modalities. Here, we review the differing results and the potential biases inherent in differing imaging approaches. In addition, we review studies showing the impact of differing imaging surfaces on T-cell activation.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/metabolism , Antigens , Lymphocyte Activation , Antigen-Presenting Cells
3.
Commun Biol ; 5(1): 1010, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153384

ABSTRACT

Non-coding RNAs (ncRNAs) offer a wealth of therapeutic targets for a range of diseases. However, secondary structures and high similarity within sequence families make specific knockdown challenging. Here, we engineer a series of artificial oligonucleotide enzymes (XNAzymes) composed of 2'-deoxy-2'-fluoro-ß-D-arabino nucleic acid (FANA) that specifically or preferentially cleave individual ncRNA family members under quasi-physiological conditions, including members of the classic microRNA cluster miR-17~92 (oncomiR-1) and the Y RNA hY5. We demonstrate self-assembly of three anti-miR XNAzymes into a biostable catalytic XNA nanostructure, which targets the cancer-associated microRNAs miR-17, miR-20a and miR-21. Our results provide a starting point for the development of XNAzymes as a platform technology for precision knockdown of specific non-coding RNAs, with the potential to reduce off-target effects compared with other nucleic acid technologies.


Subject(s)
MicroRNAs , Nucleic Acids , Antagomirs , Endonucleases , Humans , MicroRNAs/genetics , Oligonucleotides/genetics , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...