Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Food Prot ; 86(12): 100167, 2023 12.
Article in English | MEDLINE | ID: mdl-37774839

ABSTRACT

A broad understanding of community member food safety priorities in the fresh produce supply chain does not currently exist. This information is essential to improve food safety knowledge and practices effectively and efficiently throughout the fresh produce industry; therefore, the goal of this study was to identify and rank community produce safety priorities in the United States. Survey questions were designed and approved by food safety experts for participants to rank 24 fresh produce safety priorities. The anonymous survey was distributed online via Qualtrics™ to fresh produce community members from November 2020 to May 2021. A score was calculated for each priority by summing weighted ranking scores across responses. Descriptive statistics and logistic regression were used to determine frequencies and distribution of response and identify factors (e.g., role in produce safety, size/location of organization/operation) that influenced rankings. A total of 281 respondents represented fourteen different roles in the fresh produce industry, with most identified as growers (39.5%). Produce operations were distributed across the U.S. and annual produce sales ranged from below $25,000 to over $5,000,000. Health and hygiene, training, postharvest sanitation, traceability, and harvest sanitation were ranked as the top five food safety priorities. These findings provide insight into community member priorities in fresh produce safety and can be used to inform intervention efforts, ranging from specialized training for produce growers and packers, industry-driven research projects, and gaps in risk communication strategies.


Subject(s)
Food Safety , Hygiene , United States , Humans , Sanitation , Commerce
2.
Appl Environ Microbiol ; 89(7): e0012823, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37310232

ABSTRACT

Essential food workers experience elevated risks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection due to prolonged occupational exposures in food production and processing areas, shared transportation (car or bus), and employer-provided shared housing. Our goal was to quantify the daily cumulative risk of SARS-CoV-2 infection for healthy susceptible produce workers and to evaluate the relative reduction in risk attributable to food industry interventions and vaccination. We simulated daily SARS-CoV-2 exposures of indoor and outdoor produce workers through six linked quantitative microbial risk assessment (QMRA) model scenarios. For each scenario, the infectious viral dose emitted by a symptomatic worker was calculated across aerosol, droplet, and fomite-mediated transmission pathways. Standard industry interventions (2-m physical distancing, handwashing, surface disinfection, universal masking, ventilation) were simulated to assess relative risk reductions from baseline risk (no interventions, 1-m distance). Implementation of industry interventions reduced an indoor worker's relative infection risk by 98.0% (0.020; 95% uncertainty interval [UI], 0.005 to 0.104) from baseline risk (1.00; 95% UI, 0.995 to 1.00) and an outdoor worker's relative infection risk by 94.5% (0.027; 95% UI, 0.013 to 0.055) from baseline risk (0.487; 95% UI, 0.257 to 0.825). Integrating these interventions with two-dose mRNA vaccinations (86 to 99% efficacy), representing a worker's protective immunity to infection, reduced the relative infection risk from baseline for indoor workers by 99.9% (0.001; 95% UI, 0.0002 to 0.005) and outdoor workers by 99.6% (0.002; 95% UI, 0.0003 to 0.005). Consistent implementation of combined industry interventions, paired with vaccination, effectively mitigates the elevated risks from occupationally acquired SARS-CoV-2 infection faced by produce workers. IMPORTANCE This is the first study to estimate the daily risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across a variety of indoor and outdoor environmental settings relevant to food workers (e.g., shared transportation [car or bus], enclosed produce processing facility and accompanying breakroom, outdoor produce harvesting field, shared housing facility) through a linked quantitative microbial risk assessment framework. Our model has demonstrated that the elevated daily SARS-CoV-2 infection risk experienced by indoor and outdoor produce workers can be reduced below 1% when vaccinations (optimal vaccine efficacy, 86 to 99%) are implemented with recommended infection control strategies (e.g., handwashing, surface disinfection, universal masking, physical distancing, and increased ventilation). Our novel findings provide scenario-specific infection risk estimates that can be utilized by food industry managers to target high-risk scenarios with effective infection mitigation strategies, which was informed through more realistic and context-driven modeling estimates of the infection risk faced by essential food workers daily. Bundled interventions, particularly if they include vaccination, yield significant reductions (>99%) in daily SARS-CoV-2 infection risk for essential food workers in enclosed and open-air environments.


Subject(s)
COVID-19 , Occupational Exposure , Humans , SARS-CoV-2 , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Occupational Exposure/prevention & control , Infection Control
3.
Environ Res ; 172: 616-629, 2019 05.
Article in English | MEDLINE | ID: mdl-30878733

ABSTRACT

Questions related to the safety of alternative water sources, such as recycled water or reclaimed water (including grey water, produced water, return flows, and recycled wastewater), for produce production have been largely un-explored at the detail warranted for protection of public health. Additionally, recent outbreaks of Escherichia coli (E. coli) in fresh produce, in which agricultural water was suspected as the source, coupled with heightened media coverage, have elevated fruit and vegetable safety into the forefront of public attention. Exacerbating these concerns, new Federal regulations released by the U.S. Food and Drug Administration (FDA) as part of implementation of the FDA Food Safety Modernization Act (FSMA), require testing of agricultural water quality for generic E. coli. Here, we present a review of water quality criteria - including surface water, groundwater recreational water, and water reuse - in an attempt to better understand implications of new FDA regulations on irrigated produce. In addition, a Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate risks from pathogen contamination of food crops eaten fresh under the context of FDA regulations to provide perspective on current water reuse regulations across the country. Results indicate that irrigation water containing 126 CFU/100 mL of E. coli correspond to a risk of GI illness (diarrhea) of 9 cases in 100,000,000 persons (a 0.000009% risk) for subsurface irrigation, 1.1 cases in 100,000 persons (a 0.0011% risk) for furrow irrigation, and 1.1 cases in 1000 persons (a 0.11% risk) for sprinkler irrigation of lettuce. In comparison to metrics in states that currently regulate the use of recycled water for irrigation of food crops eaten fresh, the FDA FSMA water quality metrics are less stringent and therefore the use of recycled water presents a reduced risk to consumers than the FDA regulations. These findings, while limited to a one-time exposure event of lettuce irrigated with water meeting FSMA water quality regulations, highlight the need for additional assessments to determine if the scientific-basis of the regulation is protective of public health.


Subject(s)
Agricultural Irrigation , Food Safety , Water Quality , Agricultural Irrigation/standards , Diarrhea/epidemiology , Diarrhea/microbiology , Lactuca/microbiology , Lactuca/standards , Recycling/standards , Risk Assessment , United States/epidemiology , Wastewater/microbiology , Water Quality/standards
4.
Environ Res ; 170: 500-509, 2019 03.
Article in English | MEDLINE | ID: mdl-30703624

ABSTRACT

The use of nontraditional water sources, including reclaimed or recycled water, has become a desirable option to meet increasing demands in water stressed regions. In the Southwest United States, utilization of alternative water sources is becoming increasingly common, including use for landscape irrigation, environmental enhancement, cooling and power generation, potable reuse, and as a source water for agricultural irrigation. While much research has gone into identifying public perception towards water reuse schemes, little attention has been given to understanding grower attitudes, perceptions, and knowledge on the use of nontraditional water, including reclaimed water, in agriculture and how that may influence grower acceptance and production practices. This unique study utilized a needs assessment survey of growers (n = 521) within the Southwest region of the United States to gain an understanding of industry attitudes and needs regarding nontraditional water in agriculture. Results indicate that the majority of survey respondents were concerned with water availability (67.49%) yet less than half (48.30%) thought using a nontraditional water source in agriculture was 'very important'. Interestingly, respondents rated irrigation of 'food crops' third (42.20%) among agricultural activities for which they would be willing to use nontraditional water sources, behind irrigation of forage crops (61.60%) and dust control (61.60%). The importance of the use of nontraditional water sources in agriculture was influenced mostly by farm size (p = 0.007) and primary water source (p = 0.016), and the level of education was significant in respondent's level of concern over water availability (p = 0.021). Information on the quality of nontraditional water sources, showing that it is as good or better than respondents current sources, was found to shift rejection and uncertainty towards acceptance by 16.04%. The results of this study provide insight into perceived risks, willingness to use, drivers and constraints to grower adoption, and preferred methods of education regarding water reuse in agriculture. These findings can be used by water managers and planners to aid in the adoption of nontraditional waters, including reclaimed or recycled water, in agriculture thus extending water resources, securing food supplies, and protecting public health.


Subject(s)
Agriculture , Conservation of Water Resources/methods , Recycling , Agricultural Irrigation , Attitude , Perception , Southwestern United States , Wastewater , Water Supply
5.
J Am Water Works Assoc ; 111(7): 12-23, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32313288

ABSTRACT

Needless to say, the safety of treated water for potable reuse must be definitively ensured. Numerous methods are available for assessing water quality; it's important to understand their challenges and limitations.

6.
Water Res ; 133: 282-288, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29407709

ABSTRACT

Treatment of wastewater for potable reuse requires the reduction of enteric viruses to levels that pose no significant risk to human health. Advanced water treatment trains (e.g., chemical clarification, reverse osmosis, ultrafiltration, advanced oxidation) have been developed to provide reductions of viruses to differing levels of regulatory control depending upon the levels of human exposure and associated health risks. Importance in any assessment is information on the concentration and types of viruses in the untreated wastewater, as well as the degree of removal by each treatment process. However, it is critical that the uncertainty associated with virus concentration and removal or inactivation by wastewater treatment be understood to improve these estimates and identifying research needs. We reviewed the critically literature to assess to identify uncertainty in these estimates. Biological diversity within families and genera of viruses (e.g. enteroviruses, rotaviruses, adenoviruses, reoviruses, noroviruses) and specific virus types (e.g. serotypes or genotypes) creates the greatest uncertainty. These aspects affect the methods for detection and quantification of viruses and anticipated removal efficiency by treatment processes. Approaches to reduce uncertainty may include; 1) inclusion of a virus indicator for assessing efficiency of virus concentration and detection by molecular methods for each sample, 2) use of viruses most resistant to individual treatment processes (e.g. adenoviruses for UV light disinfection and reoviruses for chlorination), 3) data on ratio of virion or genome copies to infectivity in untreated wastewater, and 4) assessment of virus removal at field scale treatment systems to verify laboratory and pilot plant data for virus removal.


Subject(s)
Viruses , Waste Disposal, Fluid , Water Pollutants , Water Purification , Humans , Recycling , Risk Assessment , Uncertainty , Waste Disposal, Fluid/methods , Water Purification/methods
7.
Can J Microbiol ; 57(10): 775-84, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21936679

ABSTRACT

The increasing use of treated wastewater for irrigation heightens the importance of accurate monitoring of water quality. Chromogenic media, because they are easy to use and provide rapid results, are often used for detection of Escherichia coli in environmental samples, but unique levels of organic and inorganic compounds alter the chemistry of treated wastewater, potentially hindering the accurate performance of chromogenic media. We used MI agar and molecular confirmatory methods to assess false-positive identification of E. coli in treated wastewater samples collected from municipal utilities, an irrigation holding pond, irrigated soils, and in samples collected from storm flows destined for groundwater recharge. False-positive rates in storm flows (4.0%) agreed closely with USEPA technical literature but were higher in samples from the pond, soils, and treatment facilities (33.3%, 38.0%, and 48.8%, respectively). Sequencing of false-positive isolates confirmed that most were, like E. coli, of the family Enterobacteriaceae, and many of the false-positive isolates were reported to produce the ß-D-glucuronidase enzyme targeted by MI agar. False-positive identification rates were inversely related to air temperature, suggesting that seasonal variations in water quality influence E. coli identification. Knowledge of factors contributing to failure of chromogenic media will lead to manufacturer enhancements in media quality and performance and will ultimately increase the accuracy of future water quality monitoring programs.


Subject(s)
Bacteriological Techniques/methods , Culture Media/chemistry , Diagnostic Errors , Escherichia coli/isolation & purification , Groundwater/microbiology , Sewage/microbiology , Chromogenic Compounds/metabolism , Molecular Diagnostic Techniques/methods , Seasons , Temperature , Water Quality/standards
8.
FEMS Microbiol Lett ; 299(1): 38-43, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19686344

ABSTRACT

Methods focused on members of the genus Bacteroides have been increasingly utilized in microbial source-tracking studies for identifying and quantifying sources of nonpoint fecal contamination. We present results using standard and real-time PCR to show cross-amplification of Bacteroides 16S rRNA gene molecular assays targeting human fecal pollution with fecal DNA from freshwater fish species. All except one of the presumptively human-specific assays amplified fecal DNA from at least one fish species, and one real-time PCR assay amplified DNA from all fish species tested. Sequencing of PCR amplicons generated from fish fecal DNA using primers from the real-time assay revealed no mismatches to the human-specific probe sequences, but the nucleotide sequences of clones from fish fecal samples differed markedly from those of human feces, suggesting that the fish-related bacteria may be different strains. Our results strongly demonstrate the potential for cross-amplification of human-specific PCR assays with fish feces, and may call into question the results of studies in which these Bacteroides-specific molecular markers are used to quantify human fecal contamination in waters where fish contribute to fecal inputs.


Subject(s)
Bacteroides/isolation & purification , DNA, Bacterial/genetics , Feces/microbiology , Fresh Water/microbiology , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Animals , Bacteroides/genetics , Fishes/microbiology , Humans , Species Specificity
9.
Appl Environ Microbiol ; 69(7): 4098-102, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12839786

ABSTRACT

The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (10(5) to 10(6) CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 x 10(5) and 2.4 x 10(3) per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 x 10(5) CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (10(5) PFU/liter), and phage PP7 (10(5) PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters is ready for field deployment.


Subject(s)
Bacteriophages/isolation & purification , Cryptosporidium parvum/isolation & purification , Escherichia coli/isolation & purification , Fresh Water/microbiology , Fresh Water/parasitology , Ultrafiltration/instrumentation , Animals , Micropore Filters , Ultrafiltration/methods , Water Supply
10.
Appl Environ Microbiol ; 68(4): 2066-70, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11916735

ABSTRACT

In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted.


Subject(s)
Cryptosporidium parvum/growth & development , Cryptosporidium parvum/isolation & purification , Immunomagnetic Separation , Water/parasitology , Animals , Buffers , Humans , Hydrogen-Ion Concentration , Immunomagnetic Separation/instrumentation , Immunomagnetic Separation/methods , Magnetics , Mice , Parasite Egg Count , Reagent Kits, Diagnostic
11.
Appl Environ Microbiol ; 68(1): 161-5, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11772622

ABSTRACT

Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean +/- standard deviation, 47.53 +/- 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean +/- standard deviation, 436 +/- 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected.


Subject(s)
Bird Diseases/parasitology , Cryptosporidiosis/veterinary , Cryptosporidium parvum/isolation & purification , Ducks , Giardia lamblia/isolation & purification , Giardiasis/veterinary , Animals , Centrifugation, Density Gradient , Cryptosporidiosis/parasitology , Cryptosporidium parvum/genetics , Cryptosporidium parvum/growth & development , DNA, Protozoan/analysis , Feces/parasitology , Fluorescent Antibody Technique , Giardia lamblia/genetics , Giardia lamblia/growth & development , Giardiasis/parasitology , New Mexico , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...