Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647137

ABSTRACT

Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.

2.
J Proteome Res ; 23(2): 844-856, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38264990

ABSTRACT

Myocardial ischemia-reperfusion (IR) (stunning) injury triggers changes in the proteome and degradome of the heart. Here, we utilize quantitative proteomics and comprehensive degradomics to investigate the molecular mechanisms of IR injury in isolated rat hearts. The control group underwent aerobic perfusion, while the IR injury group underwent 20 min of ischemia and 30 min of reperfusion to induce a stunning injury. As MMP-2 activation has been shown to contribute to myocardial injury, hearts also underwent IR injury with ARP-100, an MMP-2-preferring inhibitor, to dissect the contribution of MMP-2 to IR injury. Using data-independent acquisition (DIA) and mass spectroscopy, we quantified 4468 proteins in ventricular extracts, whereby 447 proteins showed significant alterations among the three groups. We then used subtiligase-mediated N-terminomic labeling to identify more than a hundred specific cleavage sites. Among these protease substrates, 15 were identified following IR injury. We identified alterations in numerous proteins involved in mitochondrial function and metabolism following IR injury. Our findings provide valuable insights into the biochemical mechanisms of myocardial IR injury, suggesting alterations in reactive oxygen/nitrogen species handling and generation, fatty acid metabolism, mitochondrial function and metabolism, and cardiomyocyte contraction.


Subject(s)
Matrix Metalloproteinase 2 , Myocardial Reperfusion Injury , Rats , Animals , Proteomics , Myocardial Reperfusion Injury/metabolism , Mitochondria/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Ischemia/metabolism , Myocardium/metabolism
3.
J Neurosci ; 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35940876

ABSTRACT

OBJECTIVES: Multiple sclerosis (MS) is a progressive and inflammatory demyelinating disease of the central nervous system (CNS). Peroxisomes perform critical functions that contribute to CNS homeostasis. We investigated peroxisome injury and mitigating effects of peroxisome-restorative therapy on inflammatory demyelination in models of MS. METHODS: Human autopsied CNS tissues (male and female), human cell cultures and cuprizone-mediated demyelination mice (female) were examined by RT-PCR, western blotting and immunolabeling. The therapeutic peroxisome proliferator, 4-phenylbutyrate (4-PBA) was investigated in vitro and in vivo. RESULTS: White matter from MS patients showed reduced peroxisomal transcript and protein levels, including PMP70, compared to non-MS controls. Cultured human neural cells revealed that human microglia contained abundant peroxisomal proteins. TNF-α-exposed microglia displayed reduced immunolabeling of peroxisomal proteins, PMP70 and PEX11ß, which was prevented with 4-PBA. In human myeloid cells exposed to TNF-α or nigericin, suppression of PEX11ß and catalase protein levels were observed to be dependent on NLRP3 expression. Hindbrains from cuprizone-exposed mice showed reduced Abcd1, Cat, and Pex5l transcript levels, with concurrent increased Nlrp3 and Il1b transcript levels, which was abrogated by 4-PBA. In the central corpus callosum, Iba-1 in CNS-associated macrophages (CAMs) and peroxisomal thiolase immunostaining after cuprizone exposure was increased by 4-PBA. 4-PBA prevented decreased myelin basic protein and neurofilament heavy chain immunoreactivity caused by cuprizone exposure. Cuprizone-induced neurobehavioral deficits were improved by 4-PBA treatment. CONCLUSIONS: Peroxisome injury in CAMs, contributed to neuroinflammation and demyelination that was prevented by 4-PBA treatment. A peroxisome-targeted therapy might be valuable for treating inflammatory demyelination and neurodegeneration in MS.Significance statement:Multiple sclerosis (MS) is a common and disabling disorder of the CNS with no curative therapies for its progressive form. The present studies implicate peroxisome impairment in CNS-associated macrophages (CAMs), which include resident microglia and blood-derived macrophages, as an important contributor to inflammatory demyelination and neuroaxonal injury in MS. We also show that the inflammasome molecule NLRP3 is associated with peroxisome injury in vitro and in vivo, especially in CAMs. Treatment with the peroxisome proliferator 4-phenylbutyrate exerted protective effects with improved molecular, morphological and neurobehavioral outcomes that were associated with a neuroprotective CAM phenotype. These findings offer novel insights into the contribution of peroxisome injury in MS together with preclinical testing of a rational therapy for MS.

4.
Cardiovasc Res ; 117(1): 188-200, 2021 01 01.
Article in English | MEDLINE | ID: mdl-31995179

ABSTRACT

AIMS: Heart failure is a major complication in cancer treatment due to the cardiotoxic effects of anticancer drugs, especially from the anthracyclines such as doxorubicin (DXR). DXR enhances oxidative stress and stimulates matrix metalloproteinase-2 (MMP-2) in cardiomyocytes. We investigated whether MMP inhibitors protect against DXR cardiotoxicity given the role of MMP-2 in proteolyzing sarcomeric proteins in the heart and remodelling the extracellular matrix. METHODS AND RESULTS: Eight-week-old male C57BL/6J mice were treated with DXR weekly with or without MMP inhibitors doxycycline or ONO-4817 by daily oral gavage for 4 weeks. Echocardiography was used to determine cardiac function and left ventricular remodelling before and after treatment. MMP inhibitors ameliorated DXR-induced systolic and diastolic dysfunction by reducing the loss in left ventricular ejection fraction, fractional shortening, and E'/A'. MMP inhibitors attenuated adverse left ventricular remodelling, reduced cardiomyocyte dropout, and prevented myocardial fibrosis. DXR increased myocardial MMP-2 activity in part also by upregulating N-terminal truncated MMP-2. Immunogold transmission electron microscopy showed that DXR elevated MMP-2 levels within the sarcomere and mitochondria which were associated with myofilament lysis, mitochondrial degeneration, and T-tubule distention. DXR-induced myofilament lysis was associated with increased titin proteolysis in the heart which was prevented by ONO-4817. DXR also increased the level and activity of MMP-2 in human embryonic stem cell-derived cardiomyocytes, which was reduced by ONO-4817. CONCLUSIONS: MMP-2 activation is an early event in DXR cardiotoxicity and contributes to myofilament lysis by proteolyzing cardiac titin. Two orally available MMP inhibitors ameliorated DXR cardiotoxicity by attenuating intracellular and extracellular matrix remodelling, suggesting their use may be a potential prophylactic strategy to prevent heart injury during chemotherapy.


Subject(s)
Doxycycline/pharmacology , Extracellular Matrix/drug effects , Heart Diseases/prevention & control , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Myocytes, Cardiac/drug effects , Phenyl Ethers/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Cardiotoxicity , Cell Line , Disease Models, Animal , Doxorubicin , Extracellular Matrix/enzymology , Extracellular Matrix/pathology , Fibrosis , Heart Diseases/chemically induced , Heart Diseases/enzymology , Heart Diseases/physiopathology , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/enzymology , Humans , Male , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/enzymology , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/ultrastructure , Protein Kinases/metabolism , Proteolysis
5.
Cardiovasc Res ; 116(5): 1021-1031, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31373602

ABSTRACT

AIMS: Matrix metalloproteinase-2 (MMP-2) is a zinc-dependent protease which contributes to cardiac contractile dysfunction when activated during myocardial ischaemia-reperfusion (IR) injury. MMP-2 is localized to several subcellular sites inside cardiac myocytes; however, its role in the sarcoplasmic reticulum (SR) is unknown. The Ca2+ ATPase SERCA2a, which pumps cytosolic Ca2+ into the SR to facilitate muscle relaxation, is degraded in cardiac IR injury; however, the protease responsible for this is unclear. We hypothesized that MMP-2 contributes to cardiac contractile dysfunction by proteolyzing SERCA2a, thereby impairing its activity in IR injury. METHODS AND RESULTS: Isolated rat hearts were subjected to IR injury in the presence or absence of the selective MMP inhibitor ARP-100, or perfused aerobically as a control. Inhibition of MMP activity with ARP-100 significantly improved the recovery of cardiac mechanical function and prevented the increase of a 70 kDa SERCA2a degradation fragment following IR injury, although 110 kDa SERCA2a and phospholamban levels appeared unchanged. Electrophoresis of IR heart samples followed by LC-MS/MS confirmed the presence of a SERCA2a fragment of ∼70 kDa. MMP-2 activity co-purified with SR-enriched microsomes prepared from the isolated rat hearts. Endogenous SERCA2a in SR-enriched microsomes was proteolyzed to ∼70 kDa products when incubated in vitro with exogenous MMP-2. MMP-2 also cleaved purified porcine SERCA2a in vitro. SERCA activity in SR-enriched microsomes was decreased by IR injury; however, this was not prevented with ARP-100. CONCLUSION: This study shows that MMP-2 activity is found in SR-enriched microsomes from heart muscle and that SERCA2a is proteolyzed by MMP-2. The cardioprotective actions of MMP inhibition in myocardial IR injury may include the prevention of SERCA2a degradation.


Subject(s)
Matrix Metalloproteinase 2/metabolism , Myocardial Contraction , Myocardial Reperfusion Injury/enzymology , Myocardium/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum/enzymology , Animals , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Hydroxamic Acids/pharmacology , Isolated Heart Preparation , Male , Matrix Metalloproteinase Inhibitors/pharmacology , Myocardial Contraction/drug effects , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/pathology , Proteolysis , Rats, Sprague-Dawley , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/pathology , Sulfones/pharmacology
6.
Basic Res Cardiol ; 114(6): 42, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506724

ABSTRACT

Junctophilin-2 is a structural membrane protein that tethers T-tubules to the sarcoplasmic reticulum to allow for coordinated calcium-induced calcium release in cardiomyocytes. Defective excitation-contraction coupling in myocardial ischemia-reperfusion (IR) injury is associated with junctophilin-2 proteolysis. However, it remains unclear whether preventing junctophilin-2 proteolysis improves the recovery of cardiac contractile dysfunction in IR injury. Matrix metalloproteinase-2 (MMP-2) is a zinc and calcium-dependent protease that is activated by oxidative stress in myocardial IR injury and cleaves both intracellular and extracellular substrates. To determine whether junctophilin-2 is targeted by MMP-2, isolated rat hearts were perfused in working mode aerobically or subjected to IR injury with the selective MMP inhibitor ARP-100. IR injury impaired the recovery of cardiac contractile function which was associated with increased degradation of junctophilin-2 and damaged cardiac dyads. In IR hearts, ARP-100 improved the recovery of cardiac contractile function, attenuated junctophilin-2 proteolysis, and prevented ultrastructural damage to the dyad. MMP-2 was co-localized with junctophilin-2 in aerobic and IR hearts by immunoprecipitation and immunohistochemistry. In situ zymography showed that MMP activity was localized to the Z-disc and sarcomere in aerobic hearts and accumulated at sites where the striated JPH-2 staining was disrupted in IR hearts. In vitro proteolysis assays determined that junctophilin-2 is susceptible to proteolysis by MMP-2 and in silico analysis predicted multiple MMP-2 cleavage sites between the membrane occupation and recognition nexus repeats and within the divergent region of junctophilin-2. Degradation of junctophilin-2 by MMP-2 is an early consequence of myocardial IR injury which may initiate a cascade of sequelae leading to impaired contractile function.


Subject(s)
Hydroxamic Acids/therapeutic use , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase Inhibitors/therapeutic use , Membrane Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Sulfones/therapeutic use , Animals , Computer Simulation , Drug Evaluation, Preclinical , Hydroxamic Acids/pharmacology , Male , Matrix Metalloproteinase Inhibitors/pharmacology , Myocardial Contraction/drug effects , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/ultrastructure , Rats, Sprague-Dawley , Sulfones/pharmacology
7.
Biochim Biophys Acta Gen Subj ; 1863(4): 661-671, 2019 04.
Article in English | MEDLINE | ID: mdl-30659884

ABSTRACT

BACKGROUND: Cardiac troponin I (cTnI) has two flexible tails that control the cardiac cycle. The C-terminal tail, cTnI135-209, binds actin to shut off cardiac muscle contraction, whereas the competing calcium-dependent binding of the switch region, cTnI146-158, by cardiac troponin C (cTnC) triggers contraction. The N-terminal tail, cTnI1-37, regulates the calcium affinity of cTnC. cTnI is known to be susceptible to proteolytic cleavage by matrix metalloproteinase-2 (MMP-2) and calpain, two intracellular proteases implicated in ischemia-reperfusion injury. METHODS: Soluble fragments of cTnI containing its N- and C-terminal tails, cTnI1-77 and cTnI135-209, were highly expressed and purified from E. coli. We performed in vitro proteolysis studies of both constructs using liquid chromatography-mass spectrometry and solution NMR studies of the C-terminal tail. RESULTS: cTnI135-209 is intrinsically disordered, though it contains three regions with helical propensity (including the switch region) that acquire more structure upon actin binding. We identified three precise MMP-2 cleavage sites at cTnI P17-I18, A156-L157, and G199-M200. In contrast, calpain-2 has numerous cleavage sites throughout Y25-T30 and A152-A160. The critical cTnI switch region is targeted by both proteases. CONCLUSIONS: Both N-terminal and C-terminal tails of cTnI are susceptible to cleavage by MMP-2 and calpain-2. Binding to cTnC or actin confers some protection to proteolysis, which can be understood in terms of their interactions as probed by NMR studies. GENERAL SIGNIFICANCE: cTnI is an important marker of intracellular proteolysis in cardiomyocytes, given its many protease-specific cut sites, high natural abundance, indispensable functional role, and clinical use as gold standard biomarker of myocardial injury.


Subject(s)
Troponin I/metabolism , Actins/chemistry , Actins/metabolism , Animals , Calpain/metabolism , Cattle , Chromatography, Liquid , Heart , Humans , Mass Spectrometry , Matrix Metalloproteinase 2/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Troponin I/chemistry , Troponin I/isolation & purification
8.
Can J Physiol Pharmacol ; 96(12): 1238-1245, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30308129

ABSTRACT

Anthracyclines, such as doxorubicin, are commonly prescribed antineoplastic agents that cause irreversible cardiac injury. Doxorubicin cardiotoxicity is initiated by increased oxidative stress in cardiomyocytes. Oxidative stress enhances intracellular matrix metalloproteinase-2 (MMP-2) by direct activation of its full-length isoform and (or) de novo expression of an N-terminal-truncated isoform (NTT-MMP-2). As MMP-2 is localized to the sarcomere, we tested whether doxorubicin activates intracellular MMP-2 in neonatal rat ventricular myocytes (NRVM) and whether it thereby proteolyzes two of its identified sarcomeric targets, α-actinin and troponin I. Doxorubicin increased oxidative stress within 12 h as indicated by reduced aconitase activity. This was associated with a twofold increase in MMP-2 protein levels and threefold higher gelatinolytic activity. MMP inhibitors ARP-100 or ONO-4817 (1 µM) prevented doxorubicin-induced MMP-2 activation. Doxorubicin also increased the levels and activity of MMP-2 secreted into the conditioned media. Doxorubicin upregulated the mRNA expression of both full-length MMP-2 and NTT-MMP-2. α-Actinin levels remained unchanged, whereas doxorubicin downregulated troponin I in an MMP-independent manner. Doxorubicin induces oxidative stress and stimulates a robust increase in MMP-2 expression and activity in NRVM, including NTT-MMP-2. The sarcomeric proteins α-actinin and troponin I are, however, not targeted by MMP-2 under these conditions.


Subject(s)
Doxorubicin/pharmacology , Matrix Metalloproteinase 2/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Aconitate Hydratase/metabolism , Actinin/metabolism , Animals , Down-Regulation/drug effects , Hydroxamic Acids/pharmacology , Oxidative Stress/drug effects , Phenyl Ethers/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sulfones/pharmacology , Troponin I/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...