Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microorganisms ; 10(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36296271

ABSTRACT

Antimicrobial resistance (AMR) is a relevant public health problem worldwide, and microbiome bacteria may contribute to the horizontal gene transfer associated with antimicrobial resistance. The microbiome of fecal samples from Mexican adolescents were analyzed and correlated with eating habits, and the presence of AMR genes on bacteria in the microbiome was evaluated. Fecal samples from adolescents were collected and processed to extract genomic DNA. An Illumina HiSeq 1500 system was used to determine resistance genes and the microbiome of adolescents through the amplification of gene resistance and the V3-V4 regions of RNA, respectively. Analysis of the microbiome from fecal samples taken from 18 obese, overweight, and normal-weight adolescents revealed that the Firmicutes was the most frequent phylum, followed by Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia. The following species were detected as the most frequent in the samples: F. prausnitzii, P. cori, B. adolescentis, E. coli and A. muciniphila. The presence of Bacteroides, Prevotella and Ruminococcus was used to establish the enterotype; enterotype 1 was more common in women and enterotype 2 was more common in men. Twenty-nine AMR genes were found for ß-lactamases, fluoroquinolones, aminoglycosides, macrolide, lincosamides, streptogramin (MLS), tetracyclines and sulfonamides. The presence of microorganisms in fecal samples that harbor AMR genes that work against antimicrobials frequently used for the treatment of microbial infections such as b-lactams, macrolides, aminoglycosides, MLS, and tetracyclines is of great concern, as these organisms may be an important reservoir for horizontal AMR gene transfer.

2.
World J Gastroenterol ; 28(29): 3886-3902, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36157534

ABSTRACT

BACKGROUND: The high prevalence and persistence of Helicobacter pylori (H. pylori) infection, as well as the diversity of pathologies related to it, suggest that the virulence factors used by this microorganism are varied. Moreover, as its proteome contains 340 hypothetical proteins, it is important to investigate them to completely understand the mechanisms of its virulence and survival. We have previously reported that the hypothetical protein HP0953 is overexpressed during the first hours of adhesion to inert surfaces, under stress conditions, suggesting its role in the environmental survival of this bacterium and perhaps as a virulence factor. AIM: To investigate the expression and localization of HP0953 during adhesion to an inert surface and against gastric (AGS) cells. METHODS: Expression analysis was performed for HP0953 during H. pylori adhesion. HP0953 expression at 0, 3, 12, 24, and 48 h was evaluated and compared using the Kruskal-Wallis equality-of-populations rank test. Recombinant protein was produced and used to obtain polyclonal antibodies for immunolocalization. Immunogold technique was performed on bacterial sections during adherence to inert surfaces and AGS cells, which was analyzed by transmission electron microscopy. HP0953 protein sequence was analyzed to predict the presence of a signal peptide and transmembrane helices, both provided by the ExPASy platform, and using the GLYCOPP platform for glycosylation sites. Different programs, via, I-TASSER, RaptorX, and HHalign-Kbest, were used to perform three-dimensional modeling. RESULTS: HP0953 exhibited its maximum expression at 12 h of infection in gastric epithelium cells. Immunogold technique revealed HP0953 localization in the cytoplasm and accumulation in some peripheral areas of the bacterial body, with greater expression when it is close to AGS cells. Bioinformatics analysis revealed the presence of a signal peptide that interacts with the transmembrane region and then allows the release of the protein to the external environment. The programs also showed a similarity with the Tip-alpha protein of H. pylori. Tip-alpha is an exotoxin that penetrates cells and induces tumor necrosis factor alpha production, and HP0953 could have a similar function as posttranslational modification sites were found; modifications in turn require enzymes located in eukaryotic cells. Thus, to be functional, HP0953 may necessarily need to be translocated inside the cell where it can trigger different mechanisms producing cellular damage. CONCLUSION: The location of HP0953 around infected cells, the probable posttranslational modifications, and its similarity to an exotoxin suggest that this protein is a virulence factor.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Bacterial Proteins/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , Exotoxins/metabolism , Gastric Mucosa/pathology , Helicobacter Infections/microbiology , Humans , Protein Sorting Signals , Proteome/metabolism , Recombinant Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Virulence Factors/metabolism
3.
Microorganisms ; 10(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36013951

ABSTRACT

Recent multidrug resistance in Pseudomonas aeruginosa has favoured the adaptation and dissemination of worldwide high-risk strains. In June 2018, 15 P. aeruginosa strains isolated from patients and a contaminated multi-dose meropenem vial were characterized to assess their association to an outbreak in a Mexican paediatric hospital. The strains were characterized by antibiotic susceptibility profiling, virulence factors' production, and biofilm formation. The clonal relationship among isolates was determined with pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) sequencing. Repressor genes for the MexAB-OprM efflux pump were sequenced for haplotype identification. Of the strains, 60% were profiled as extensively drug-resistant (XDR), 33% as multidrug-resistant (MDR), and 6.6% were classified as sensitive (S). All strains presented intermediate resistance to colistin, and 80% were sensitive to aztreonam. Pyoverdine was the most produced virulence factor. The PFGE technique was performed for the identification of the outbreak, revealing eight strains with the same electrophoretic pattern. ST235 and ten new sequence types (STs) were identified, all closely related to ST233. ST3241 predominated in 26.66% of the strains. Twenty-five synonymous and seventeen nonsynonymous substitutions were identified in the regulatory genes of the MexAB-OprM efflux pump, and nalC was the most variable gene. Six different haplotypes were identified. Strains from the outbreak were metallo-ß-lactamases and phylogenetically related to the high-risk clone ST233.

4.
PLoS One ; 17(5): e0266742, 2022.
Article in English | MEDLINE | ID: mdl-35536836

ABSTRACT

Pseudomonas aeruginosa has different resistant mechanisms including the constitutive MexAB-OprM efflux pump. Single nucleotide polymorphisms (SNPs) in the mexR, nalC, and nalD repressors of this efflux pump can contribute to antimicrobial resistance; however, it is unknown whether these changes are mainly related to genetic lineages or environmental pressure. This study identifies SNPs in the mexR, nalC, and nalD genes in clinical and environmental isolates of P. aeruginosa (including high-risk clones). Ninety-one P. aeruginosa strains were classified according to their resistance to antibiotics, typified by multilocus sequencing, and mexR, nalC, and nalD genes sequenced for SNPs identification. The mexAB-oprM transcript expression was determined. The 96.7% of the strains were classified as multidrug resistant. Eight strains produced serine carbapenemases, and 11 strains metallo-ß-lactamases. Twenty-three new STs and high-risk clones ST111 and ST233 were identified. SNPs in the mexR, nalC, and nalD genes revealed 27 different haplotypes (patterns). Sixty-two mutational changes were identified, 13 non-synonymous. Haplotype 1 was the most frequent (n = 40), and mainly identified in strains ST1725 (33/40), with 57.5% pan drug resistant strains, 36.5% extensive drug resistant and two strains exhibiting serin-carbapenemases. Haplotype 12 (n = 9) was identified in ST233 and phylogenetically related STs, with 100% of the strains exhibiting XDR and 90% producing metallo-ß-lactamases. Haplotype 5 was highly associated with XDR and related to dead when compared to ST1725 and ST233 (RRR 23.34; p = 0.009 and RRR 32.01; p = 0.025). A significant relationship between the mexR-nalC-nalD haplotypes and phylogenetically related STs was observed, suggesting mutational changes in these repressors are highly maintained within genetic lineages. In addition, phylogenetically related STs showed similar resistant profiles; however, the resistance was (likely or partly) attributed to the MexAB-OprM efflux pump in 56% of the strains (only 45.05% showed mexA overtranscription), in the remaining strains the resistance could be attributed to carbapenemases or mechanisms including other pumps, since same SNPs in the repressor genes gave rise to different resistance profiles.


Subject(s)
Nucleotides , Pseudomonas aeruginosa , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genes, Regulator , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Nucleotides/metabolism , Pseudomonas aeruginosa/metabolism , beta-Lactamases/genetics
5.
Microb Pathog ; 165: 105494, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35314281

ABSTRACT

In this study, the genomes of two lytic bacteriophages, vB_EcoS-phiEc3 and vB_EcoS-phiEc4, were sequenced and characterized using bioinformatics approaches. Whole-genome analysis showed that both phages belonged to the Kagunavirus genus, Guernseyvirinae subfamily and Siphoviridae family. Moreover, their genomes had 45, 288 bp and 44,540 bp, and G + C content of 48.42% and 50.04%, respectively. The genome of vB_EcoS-phiEc3 harbored 80 protein coding sequences (CDSs), whereas vB_EcoS-phiEc4 harbored 75 CDSs. Among them, 50 CDSs in vB_EcoS-phiEc3 and 44 CDSs in vB_EcoS-phiEc4 were considered as functional genes. Their lytic activity against multidrug-resistant uropathogenic Escherichia coli (UPEC) strains, as well as the absence of antibiotic resistance genes, lysogenic and virulence genes, enable vB_EcoS-phiEc3 and vB_EcoS-phiEc4 as a safe therapy option against UPEC infections.


Subject(s)
Bacteriophages , Escherichia coli Infections , Siphoviridae , Uropathogenic Escherichia coli , Bacteriophages/genetics , Genome, Viral , Humans , Siphoviridae/genetics , Uropathogenic Escherichia coli/genetics
6.
Article in English | MEDLINE | ID: mdl-28560186

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging.


Subject(s)
Enterotoxigenic Escherichia coli/growth & development , Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/diagnostic imaging , Escherichia coli Infections/microbiology , Animals , Bacterial Shedding , DNA, Bacterial , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli K12/genetics , Escherichia coli K12/growth & development , Escherichia coli Proteins/genetics , Feces/microbiology , Genetic Vectors , HSP70 Heat-Shock Proteins/genetics , Intestines/diagnostic imaging , Intestines/microbiology , Luciferases, Bacterial/genetics , Luminescent Measurements/methods , Mice, Inbred BALB C , Staining and Labeling/methods
7.
Genome Announc ; 5(8)2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28232434

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México.

9.
Front Microbiol ; 7: 1201, 2016.
Article in English | MEDLINE | ID: mdl-27536289

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells.

10.
Front Microbiol ; 6: 369, 2015.
Article in English | MEDLINE | ID: mdl-25999924

ABSTRACT

UNLABELLED: Staphylococcus aureus is an opportunistic pathogen that colonizes human hosts and causes a wide variety of diseases. Two interacting regulatory systems called agr (accessory gene regulator) and sar (staphylococcal accessory regulator) are involved in the regulation of virulence factors. The aim of this study was to evaluate the effect of vancomycin on hld and spa gene expression during the exponential and post-exponential growth phases in multidrug-resistant (MDR) S. aureus. METHODS: Antibiotic susceptibility was evaluated by the standard microdilution method. The phylogenetic profile was obtained by pulsed-field gel electrophoresis (PFGE). Polymorphisms of agr and SCCmec (staphylococcal cassette chromosome mec) were analyzed by multiplex polymerase chain reaction (PCR). The expression levels of hld and spa were analyzed by reverse transcription-PCR. An enzyme-linked immunosorbent assay (ELISA) was performed to detect protein A, and biofilm formation was analyzed via crystal violet staining. RESULTS: In total, 60.60% (20/33) of S. aureus clinical isolates were MDR. Half (10/20) of the MDR S. aureus isolates were distributed in subcluster 10, with >90% similarity among them. In the isolates of this subcluster, a high prevalence (100%) for the agrII and the cassette SCCmec II polymorphisms was found. Our data showed significant increases in hld expression during the post-exponential phase in the presence and absence of vancomycin. Significant increases in spa expression, protein A production and biofilm formation were observed during the post-exponential phase when the MDR S. aureus isolates were challenged with vancomycin. CONCLUSION: The polymorphism agrII, which is associated with nosocomial isolates, was the most prevalent polymorphism in MDR S. aureus. Additionally, under our study conditions, vancomycin modified hld and spa expression in these clinical isolates. Therefore, vancomycin may regulate alternative systems that jointly participate in the regulation of these virulence factors.

11.
Microbiol Res ; 172: 68-78, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25530579

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen that has acquired several mechanisms of resistance to multiple groups of antibiotic agents and has been widely employed as a model organism for the study of biofilm formation. Many P. aeruginosa structures embedded in the extracellular matrix, such as exopolysaccharides (EPS), flagella, and type-IV pili (T4P), have been associated with biofilm formation. In this study, we assess biofilm formation by crystal violet quantification in clinical strains of multidrug-resistant (MDR) P. aeruginosa isolated from the Hospital Infantil de México Federico Gómez (HIMFG) associated to total and reducing EPS production (quantification by the anthrone and DNS method, respectively), twitching motility activity by T4P, and flagellar-mediated motility. RESULTS: The determination of Minimum Inhibitory Concentration (MIC) showed that >50% of P. aeruginosa strains were resistant to 12 different antibiotics (TIC, CAZ, CTX, CRO, FEP, AZT, GM, CIP, LEV, PZT, IMP, and MEM). Total and reducing EPS analysis of the 58 biofilm-forming MDR P. aeruginosa strains showed heterogeneous values ranging from OD600 9.06 to 212.33, displaying a linear correlation with the production of total EPS (59.66µg/ml to 6000.33µg/ml; R(2)=0.89), and a higher correlation with reducing EPS (88.33µg/ml to 1100.66µg/ml; R(2)=0.96). T4P twitching motility showed a moderated linear correlation (2.00mm to 28.33mm; R(2)=0.74). Even though it has been demonstrated that flagella contribute to the initial stages of biofilm formation, crystal violet analysis showed a moderate correlation (R(2)=0.49) with flagellar-mediated motility in MDR P. aeruginosa under the tested conditions. In addition, PFGE profiles revealed two subgroups generating profiles group A, consisting of 89.63% (52/58) of the strains, and group B, consisting of 13.09% (6/58) of the strains. CONCLUSIONS: Phenotypic analysis showed a correlation among the biofilms developed in the MDR P. aeruginosa strains with EPS (total and reducing) production, T4P-activity by twitching motility and flagellar-mediated motility.


Subject(s)
Biofilms/growth & development , Drug Resistance, Multiple, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/pharmacology , Hospitals , Humans , Locomotion , Mexico , Microbial Sensitivity Tests , Polysaccharides, Bacterial/metabolism , Pseudomonas aeruginosa/isolation & purification
12.
Front Microbiol ; 5: 709, 2014.
Article in English | MEDLINE | ID: mdl-25646093

ABSTRACT

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) colonize the human intestinal mucosa using pili and non-pili colonization factors (CFs). CS21 (also designated Longus) is one of the most prevalent CFs encoded by a 14 kb lng DNA cluster located in a virulence plasmid of ETEC; yet limited information is available on the prevalence of CS21 positive ETEC isolates in different countries. The aim of this study was to evaluate the prevalence of CS21 among ETEC clinical isolates from Mexican and Bangladeshi children under 5 years old with diarrhea and to determine the phenotypic and genotypic features of these isolates. METHODS: ETEC clinical isolates positive to lngA gene were characterized by genotype, multidrug-resistance, self-aggregation, biofilm formation, and adherence to HT-29 cell line. RESULTS: A collection of 303 E. coli clinical isolates were analyzed, the 81.51% (247/303) were identified as ETEC, 30.76% (76/247) were st (+)/lt (+), and 25.10% (62/247) were positive for the lngA gene. Among the lngA (+) ETECs identified, 50% of isolates (31/62) were positive for LngA protein. The most frequent serotype was O128ac:H12 found in 19.35% (12/62) of lngA (+) ETEC studied. Multidrug-resistance (MDR) lngA (+) ETEC isolates was identified in 65% (39/60), self-aggregation in 48.38% (30/62), and biofilm formation in 83.87% (52/62). ETEC lngA (+) isolates were able to adhere to HT-29 cells at different levels. Two lngA isogenic mutants were constructed in the ETEC E9034A and ETEC73332 clinical isolate, showing a 77% and 98% reduction in adherence, respectively with respect to the wild type. CONCLUSION: ETEC isolates that have the lngA gene showed features associated with self-aggregation, and adherence to HT-29 cells, important characteristics in the human gut colonization process and pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...