Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Immunother Cancer ; 11(12)2023 12 12.
Article in English | MEDLINE | ID: mdl-38164757

ABSTRACT

INTRODUCTION: The clinical benefit of the anti-CTLA-4 monoclonal antibody (mAb) ipilimumab has been well established but limited by immune-related adverse events, especially when ipilimumab is used in combination with anti-PD-(L)1 mAb therapy. To overcome these limitations, we have developed XTX101, a tumor-activated, Fc-enhanced anti-CTLA-4 mAb. METHODS: XTX101 consists of an anti-human CTLA-4 mAb covalently linked to masking peptides that block the complementarity-determining regions, thereby minimizing the mAb binding to CTLA-4. The masking peptides are designed to be released by proteases that are typically dysregulated within the tumor microenvironment (TME), resulting in activation of XTX101 intratumorally. Mutations within the Fc region of XTX101 were included to enhance affinity for FcγRIII, which is expected to enhance potency through antibody-dependent cellular cytotoxicity. RESULTS: Biophysical, biochemical, and cell-based assays demonstrate that the function of XTX101 depends on proteolytic activation. In human CTLA-4 transgenic mice, XTX101 monotherapy demonstrated significant tumor growth inhibition (TGI) including complete responses, increased intratumoral CD8+T cells, and regulatory T cell depletion within the TME while maintaining minimal pharmacodynamic effects in the periphery. XTX101 in combination with anti-PD-1 mAb treatment resulted in significant TGI and was well tolerated in mice. XTX101 was activated in primary human tumors across a range of tumor types including melanoma, renal cell carcinoma, colon cancer and lung cancer in an ex vivo assay system. CONCLUSIONS: These data demonstrate that XTX101 retains the full potency of an Fc-enhanced CTLA-4 antagonist within the TME while minimizing the activity in non-tumor tissue, supporting the further evaluation of XTX101 in clinical studies.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Mice , Animals , CTLA-4 Antigen , Ipilimumab/therapeutic use , Antineoplastic Agents/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Melanoma/drug therapy , Disease Models, Animal , Mice, Transgenic , Peptides/therapeutic use , Tumor Microenvironment
2.
Laryngoscope ; 132(6): 1196-1204, 2022 06.
Article in English | MEDLINE | ID: mdl-34709651

ABSTRACT

OBJECTIVES/HYPOTHESIS: To assess the efficacy and mechanism of action of a novel approach to mitigate acute and chronic radiation toxicity in a validated animal model. STUDY DESIGN: Randomized, prospective study using an in vivo rat model. METHODS: Experimental animal study utilizing Sprague-Dawley rats divided into three cohorts: 1) radiation + dimethyl sulfoxide (DMSO) (inert vehicle); 2) radiation + RTA-408 (therapeutic drug); and 3) no radiation + DMSO. All animals in the radiation cohorts underwent 40 Gy of radiation with subsequent inferior epigastric axial rotational flap 30 days later in all cohorts with percentage of flap necrosis and vascular density calculated by blinded observers. In a second experiment, an additional three cohorts, underwent serial punch biopsies of the abdominal skin before, during, and after radiation and drug/vehicle control treatment. Transcriptome analysis utilizing gene set enrichment analysis and digital polymerase chain reaction were performed at various time points. RESULTS: The first experiment revealed average flap necrosis of 20% (95% confidence interval [CI] 16-45) in the radiation control group, 3% (95% CI 0-11) in the nonirradiated control, and 3% (95% CI 0.2-10) in the radiation group treated with RTA-408. Vascular density was preserved in the treatment group as compared to the radiated control. Nine rats were included in the second experiment, and transcriptome analyses in the treatment group revealed robust activation of antioxidant pathways with induced expression of genes associated with hypoxia and adipogenesis/angiogenesis. CONCLUSIONS: Administration of RTA-408 during radiation treatment in a rat model resulted in transcriptome changes which appear to mitigate the toxic effects of radiation, preserving capillary networks and improving flap survival and tissue healing after subsequent surgery. LEVEL OF EVIDENCE: Foundational Evidence, Animal Research Laryngoscope, 132:1196-1204, 2022.


Subject(s)
Dimethyl Sulfoxide , Triterpenes , Animals , Humans , Necrosis , Prospective Studies , Rats , Rats, Sprague-Dawley , Triterpenes/therapeutic use
3.
Clin Cancer Res ; 28(5): 915-927, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34911681

ABSTRACT

PURPOSE: We hypothesize that the addition of the phosphodiesterase-5 inhibitor tadalafil to the PD-1 inhibitor nivolumab, is safe and will augment immune-mediated antitumor responses in previously untreated squamous cell carcinoma of the head and neck (HNSCC). PATIENTS AND METHODS: We conducted a two-arm multi-institutional neoadjuvant randomized trial in any-stage resectable HNSCC (NCT03238365). Patients were stratified at randomization by human papillomavirus (HPV) status. Patients in both arms received nivolumab 240 mg intravenously on days 1 and 15 followed by surgery on day 28. Those in the combination therapy arm also received tadalafil 10 mg orally once daily for 4 weeks. Imaging, blood, and tumor were obtained pretreatment and posttreatment for correlative analysis. RESULTS: Neoadjuvant therapy was well-tolerated with no grade 3 to 5 adverse events and no surgical delays. Twenty-five of 46 (54%) evaluable patients had a pathologic treatment response of ≥20%, including three (7%) patients with a complete pathologic response. Regardless of HPV status, tumor proliferation rate was a negative predictor of response. A strong pretreatment T-cell signature in the HPV-negative cohort was a predictor of response. Tadalafil altered the immune microenvironment, as evidenced by transcriptome data identifying enriched B- and natural killer cell gene sets in the tumor and augmented effector T cells in the periphery. CONCLUSIONS: Preoperative nivolumab ± tadalafil is safe in HNSCC and results in more than 50% of the patients having a pathologic treatment response of at least 20% after 4 weeks of treatment. Pretreatment specimens identified HPV status-dependent signatures that predicted response to immunotherapy while posttreatment specimens showed augmentation of the immune microenvironment with the addition of tadalafil.


Subject(s)
Head and Neck Neoplasms , Neoadjuvant Therapy , Squamous Cell Carcinoma of Head and Neck , Head and Neck Neoplasms/drug therapy , Humans , Neoadjuvant Therapy/adverse effects , Nivolumab/therapeutic use , Papillomavirus Infections/complications , Squamous Cell Carcinoma of Head and Neck/drug therapy , Tadalafil/therapeutic use , Treatment Outcome , Tumor Microenvironment
4.
Int J Radiat Oncol Biol Phys ; 110(5): 1341-1349, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33647370

ABSTRACT

Outcomes for triple negative breast cancer (TNBC) are poor and may be improved by increasing CD8+ tumor infiltrating lymphocytes (TIL) to augment antitumor immunity. Radiation (RT) can promote immunogenic cell death with increased antitumor T cell activity but also stimulates suppressive regulatory T cells (Tregs). Because metabolic alterations affect immune homeostasis and prior studies show caloric restriction (CR) combined with RT improves preclinical TNBC outcomes, we hypothesized that CR augments RT, in part, by altering intratumoral immunity. Using an in vivo model of TNBC, we treated mice with ad libitum (AL) diet, radiation, a CR diet, or CR + RT, and demonstrated an immune suppressive environment with a significant increase in CD4+ CD25+Foxp3+ Tregs after RT but not in CR-fed mice. CD8:Treg ratio in CR + RT TIL increased 4-fold compared with AL + RT mice. In vivo CD8 depletion was performed to assess the role of effector T cells in mitigating the effects of CR, and it was found that in mice undergoing CR, depletion of CD8 T cells resulted in increased tumor progression and decreased median survival compared with isotype control-treated mice. In addition, PD-1 expression on CD3+CD8+ T cells within the tumor microenvironment was significantly increased in CR + RT versus AL + RT treated mice as per immunofluorescence. Serum from breast cancer patients undergoing RT alone or CR and RT was collected pre- and postintervention, and a cytokine array demonstrated that patients treated with CR + RT had notable decreases in immunosuppressive cytokines such as IL-2Rγ, IL-10Rß, and TGF-ß2 and 3 compared with patients receiving RT alone. In conclusion, combining CR with RT decreases intratumoral Tregs, increases CD8:Treg, and increases PD-1 expression via a process dependent on CD8 T cells in a TNBC model. Breast cancer patients undergoing CR concurrently with RT also had significant reduction in immunosuppressive cytokine levels compared with those receiving RT alone.


Subject(s)
Caloric Restriction , Lymphocytes, Tumor-Infiltrating/radiation effects , T-Lymphocytes, Regulatory/radiation effects , Triple Negative Breast Neoplasms/radiotherapy , Tumor Microenvironment/radiation effects , Adult , Aged , Animals , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/radiation effects , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/radiation effects , Combined Modality Therapy/methods , Disease Progression , Female , Flow Cytometry , Forkhead Transcription Factors , Humans , Interleukin Receptor Common gamma Subunit/blood , Interleukin-10 Receptor beta Subunit/blood , Interleukin-2 Receptor alpha Subunit , Lymphocyte Depletion/methods , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred BALB C , Middle Aged , Programmed Cell Death 1 Receptor/metabolism , Random Allocation , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta2/blood , Transforming Growth Factor beta3/blood , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/mortality , Tumor Microenvironment/immunology
5.
Front Oncol ; 10: 566315, 2020.
Article in English | MEDLINE | ID: mdl-33344227

ABSTRACT

PD-1 blockade represents a promising treatment in patients with head and neck squamous cell carcinoma (HNSCC). We analyzed results of a neoadjuvant randomized window-of-opportunity trial of nivolumab plus/minus tadalafil to investigate whether immunotherapy-mediated treatment effects vary by site of involvement (primary tumor, lymph nodes) and determine how radiographic tumor shrinkage correlates with pathologic treatment effect. PATIENTS AND METHODS: Forty-four patients enrolled in trial NCT03238365 were treated with nivolumab 240 mg intravenously on days 1 and 15 with or without oral tadalafil, as determined by random assignment, followed by surgery on day 31. Radiographic volumetric response (RVR) was defined as percent change in tumor volume from pretreatment to posttreatment CT scan. Responders were defined as those with a 10% reduction in the volume of the primary tumor or lymph nodes (LN). Pathologic treatment effect (PTE) was defined as the area showing fibrosis or lymphohistiocytic inflammation divided by total tumor area. RESULTS: Sixteen of 32 patients (50%) with pathologic evidence of LN involvement exhibited discordant PTE between primary sites and LN. In four patients with widely discordant adjacent LN, increased PTE was associated with increased infiltration of tumor CD8+ T cells and CD163+ macrophages, whereas stromal regulatory T cells were associated with low nodal PTE. RVR correlated with PTE at both primary tumor (slope = 0.55, p < 0.001) and in LN (slope = 0.62, p < 0.05). 89% (16/18) of radiographic non-responders with T1-T3 primary sites had no (n = 7) or minimal PTE (n = 9), whereas 15/17 (88%) of radiographic responders had moderate (n = 12) or complete (n = 3) PTE. CONCLUSION: Nivolumab often induces discordant treatment effects between primary tumor sites and metastatic lymph nodes within subjects. This treatment discordance was also demonstrated in adjacent lymph nodes, which may correlate with local immune cell makeup. Finally, although these data were generated by a relatively small population size, our data support the use of early radiographic response to assess immunotherapy treatment effect in HNSCC.

6.
Front Oncol ; 10: 565306, 2020.
Article in English | MEDLINE | ID: mdl-33330034

ABSTRACT

INTRODUCTION: The progression and clinical course of head and neck squamous cell carcinoma (HNSCC) relies on complex interactions between cancer and stromal cells in the tumor microenvironment (TME). Among the most abundant of these stromal cells are cancer-associated fibroblasts (CAFs). While their contribution to tumor progression is widely acknowledged, and various CAF-targeted treatments are under development, the relationship between CAF density and the clinicopathologic course of HNSCC has not been clearly defined. Here we examine the published evidence investigating the relationship of cancer-associated fibroblasts to local recurrence and indicators of prognostic significance in HNSCC. METHODS: We conducted a meta-analysis of existing publications that compare the relationship between CAF density, local recurrence, and clinically significant pathologic criteria of disease development (T stage, nodal positivity, clinical stage, vascular invasion, perineural invasion, Ki67 expression, and differentiation). Thirteen studies met the selection criteria, providing a total study population of 926 patients. Forest plots and risk ratios were generated to illustrate overall relationships. RESULTS: Higher CAF density within the tumor microenvironment is associated with advanced T stage, nodal infiltration, clinical stage, vascular invasion, perineural invasion, Ki67 expression, and differentiation (p <0.05). High CAF density is also associated with increased rates of local recurrence (p <0.001). CONCLUSIONS: Across multiple studies, increased CAF density is correlated with histopathological criteria of poor prognosis in HNSCC. These findings highlight that CAFs may play a pivotal role in HNSCC development and progression. Staining for CAFs may represent a valuable addition to current pathologic analysis and help to guide prognosis and treatment. Understanding the mechanisms by which CAFs reciprocally interact with cancer cells will be crucial for optimization of TME-focused treatment of HNSCC.

7.
J Extracell Vesicles ; 9(1): 1790159, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32944178

ABSTRACT

Exosomes, or small extracellular vesicles (sEVs), serve as intercellular messengers with key roles in normal and pathological processes. Our previous work had demonstrated that Dsg2 expression in squamous cell carcinoma (SCC) cells enhanced both sEV secretion and loading of pro-mitogenic cargo. In this study, using wild-type Dsg2 and a mutant form that is unable to be palmitoylated (Dsg2cacs), we investigated the mechanism by which Dsg2 modulates SCC tumour development and progression through sEVs. We demonstrate that palmitoylation was required for Dsg2 to regulate sub-cellular localisation of lipid raft and endosomal proteins necessary for sEV biogenesis. Pharmacological inhibition of the endosomal pathway abrogated Dsg2-mediated sEV release. In murine xenograft models, Dsg2-expressing cells generated larger xenograft tumours as compared to cells expressing GFP or Dsg2cacs. Co-treatment with sEVs derived from Dsg2-over-expressing cells increased xenograft size. Cytokine profiling revealed, Dsg2 enhanced both soluble and sEV-associated IL-8 and miRNA profiling revealed, Dsg2 down-regulated both cellular and sEV-loaded miR-146a. miR-146a targets IRAK1, a serine-threonine kinase involved in IL-8 signalling. Treatment with a miR-146a inhibitor up-regulated both IRAK1 and IL-8 expression. RNAseq analysis of HNSCC tumours revealed a correlation between Dsg2 and IL-8. Finally, elevated IL-8 plasma levels were detected in a subset of HNSCC patients who did not respond to immune checkpoint therapy, suggesting that these patients may benefit from prior anti-IL-8 treatment. In summary, these results suggest that intercellular communication through cell-cell adhesion, cytokine release and secretion of EVs are coordinated, and critical for tumour growth and development, and may serve as potential prognostic markers to inform treatment options. ABBREVIATIONS: Basal cell carcinomas, BCC; Betacellulin, BTC; 2-bromopalmitate, 2-Bromo; Cluster of differentiation, CD; Cytochrome c oxidase IV, COX IV; Desmoglein 2, Dsg2; Early endosome antigen 1, EEA1; Epidermal growth factor receptor substrate 15, EPS15; Extracellular vesicle, EV; Flotillin 1, Flot1; Glyceraldehyde-3-phosphate dehydrogenase, GAPH; Green fluorescent protein, GFP; Head and neck squamous cell carcinoma, HNSCC; Interleukin-1 receptor-associated kinase 1, IRAK1; Interleukin 8, IL-8; Large EV, lEV; MicroRNA, miR; Palmitoylacyltransferase, PAT; Ras-related protein 7 Rab7; Small EV, sEV; Squamous cell carcinoma, SCC; Tissue inhibitor of metalloproteinases, TIMP; Tumour microenvironment, TME.

8.
Cancers (Basel) ; 12(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825010

ABSTRACT

For the past 100 years, oncologists have relentlessly pursued the destruction of tumor cells by surgical, chemotherapeutic or radiation oncological means. Consistent with this focus, treatment plans are typically based on key characteristics of the tumor itself such as disease site, histology and staging based on local, regional and systemic dissemination. Precision medicine is similarly built on the premise that detailed knowledge of molecular alterations of tumor cells themselves enables better and more effective tumor cell destruction. Recently, host factors within the tumor microenvironment including the vasculature and immune systems have been recognized as modifiers of disease progression and are being targeted for therapeutic gain. In this review, we argue that-to optimize the impact of old and new treatment options-we need to take account of an epidemic that occurs independently of-but has major impact on-the development and treatment of malignant diseases. This is the rapidly increasing number of patients with excess weight and its' attendant metabolic consequences, commonly described as metabolic syndrome. It is well established that patients with altered metabolism manifesting as obesity, metabolic syndrome and chronic inflammation have an increased incidence of cancer. Here, we focus on evidence that these patients also respond differently to cancer therapy including radiation and provide a perspective how exercise, diet or pharmacological agents may be harnessed to improve therapeutic responses in this patient population.

9.
J Am Coll Surg ; 230(4): 659-667, 2020 04.
Article in English | MEDLINE | ID: mdl-32058016

ABSTRACT

BACKGROUND: Chronic obstructive respiratory disorders (ORDs) are linked to increased rates of cancer-related deaths. Little is known about the effects of hypercapnia (elevated CO2) on development of pancreatic ductal adenocarcinoma (PDAC) and drug resistance. STUDY DESIGN: Two PDAC cell lines were exposed to normocapnic (5% CO2) and hypercapnic (continuous/intermittent 10% CO2) conditions, physiologically similar to patients with active ORD. Cells were assessed for proliferation rate, colony formation, and chemo-/radiotherapeutic efficacy. In a retrospective clinical study design, patients with PDAC who had undergone pancreatic resection between 2002 and 2014 were reviewed. Active smokers were excluded to remove possible smoking-related protumorigenic influence. Clinical data, pathologic findings, and survival end points were recorded. Kaplan-Meier and Cox regression analyses were performed. RESULTS: Exposure to hypercapnia resulted in increased colony formation and proliferation rates in vitro in both cell lines (MIA-PaCa-2: 111% increase and Panc-1: 114% increase; p < 0.05). Hypercapnia exposure induced a 2.5-fold increase in oxaliplatin resistance (p < 0.05) in both cell lines and increased resistance to ionizing radiation in MIA-PaCa-2 cells (p < 0.05). Five hundred and seventy-eight patients were included (52% were male, median age was 68.7 years [interquartile range 60.6 to 76.8 years]). Cox regression analysis, assessing TNM staging, age, sex, and ORD status, identified ORD as an independent risk factor for both overall survival (hazard ratio 1.64; 95% CI, 1.2 to 2.3; p < 0.05) and disease-free survival (hazard ratio 1.68; 95% CI, 1.06 to 2.67). CONCLUSIONS: PDAC cells exposed to hypercapnic environments, which is common in patients with ORD, showed tumor proliferation, radioresistance, and chemoresistance. Patients with a history of ORD had a worse overall prognosis, suggesting that hypercapnic conditions play a role in the development and progression of PDAC and stressing the need for patient-tailored care.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/etiology , Drug Resistance, Neoplasm , Hypercapnia/complications , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/etiology , Aged , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Chronic Disease , Disease Progression , Female , Humans , Hypercapnia/etiology , Lung Diseases, Obstructive/complications , Male , Middle Aged , Pancreatic Neoplasms/pathology , Retrospective Studies
10.
J Biol Chem ; 295(10): 3316-3329, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31964716

ABSTRACT

Phosphorylation of specific residues in the activation loops of AGC kinase group (protein kinase A, G, and C families) is required for activity of most of these kinases, including the catalytic subunit of PKA (PKAc). Although many phosphorylated AGC kinases are sensitive to phosphatase-mediated dephosphorylation, the PKAc activation loop uniquely resists dephosphorylation, rendering it "constitutively" phosphorylated in cells. Previous biophysical experiments and structural modeling have suggested that the N-terminal myristoylation signal and the C-terminal FXXF motif in PKAc regulate its thermal stability and catalysis. Here, using site-directed mutagenesis, molecular modeling, and in cell-free and cell-based systems, we demonstrate that substitutions of either the PKAc myristoylation signal or the FXXF motif only modestly reduce phosphorylation and fail to affect PKAc function in cells. However, we observed that these two sites cooperate with an N-terminal FXXW motif to cooperatively establish phosphatase resistance of PKAc while not affecting kinase-dependent phosphorylation of the activation loop. We noted that this tripartite cooperative mechanism of phosphatase resistance is functionally relevant, as demonstrated by changes in morphology, adhesion, and migration of human airway smooth muscle cells transfected with PKAc variants containing amino acid substitutions in these three sites. These findings establish that three allosteric sites located at the PKAc N and C termini coordinately regulate the phosphatase sensitivity of this enzyme. This cooperative mechanism of phosphatase resistance of AGC kinase opens new perspectives toward therapeutic manipulation of kinase signaling in disease.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Amino Acid Motifs , Catalytic Domain , Cell Adhesion , Cell Line , Cell Movement , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Cytosol/metabolism , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Phosphorylation , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Signal Transduction
11.
Laryngoscope ; 130(9): E490-E498, 2020 09.
Article in English | MEDLINE | ID: mdl-31593308

ABSTRACT

OBJECTIVES: Alterations of cellular metabolism have been implicated in immune dysfunction in the tumor microenvironment (TME) of head and neck squamous cell carcinoma (HNSCC). Metformin has recently emerged as a candidate of interest for combination with immunotherapy in HNSCC. This study investigated the effect of metformin on immune cell infiltrates of HNSCC. METHODS: Retrospective analysis of T cell infiltrates in primary tumor specimens from patients enrolled in a clinical window of opportunity trial of presurgical metformin. Metformin was titrated to a standard diabetic dose (2000 mg/day) for a minimum of 9 days (mean 13.6 days) prior to surgical resection. Pre and posttreatment surgical specimens from 36 patients (16 HPV+ , 20 HPV- ) were comparatively analyzed. FOXP3+ and CD8+ immune cell infiltrates in the tumor and peritumoral stroma of pre and posttreatment HNSCC specimens were quantified by digital image analysis using Visiopharm software. RESULTS: Metformin treatment was associated with a 41.4% decrease in FOXP3+ T cells in intratumor regions of interest (P = .004) and a 66.5% increase in stromal CD8+ T cells at the leading edge of the tumor (P = .021) when compared to pretreatment biopsies. This was reflected in increased CD8+ /FOXP3+ cell ratios within the tumor (P < .001) and stromal compartments (P < .001). The effects of metformin occurred independently of HPV status. CONCLUSION: Metformin treatment may favorably alter the immune TME in HNSCC independent of HPV status. LEVEL OF EVIDENCE: 1b. This study is most accurately described as a non-randomized controlled trial and therefore may reflect a level of evidence below 1b but above 2a from the provided "levels of evidence" chart. Laryngoscope, 130:E490-E498, 2020.


Subject(s)
CD8 Antigens/immunology , Forkhead Transcription Factors/immunology , Head and Neck Neoplasms/drug therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Metformin/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Tumor Microenvironment/drug effects , Adult , Aged , Aged, 80 and over , Chemotherapy, Adjuvant , Female , Head and Neck Neoplasms/immunology , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Preoperative Period , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/immunology , Tumor Microenvironment/immunology
12.
Cancer Discov ; 10(2): 254-269, 2020 02.
Article in English | MEDLINE | ID: mdl-31796433

ABSTRACT

Combinations of BRAF inhibitors and MEK inhibitors (BRAFi + MEKi) are FDA-approved to treat BRAF V600E/K-mutant melanoma. Efficacy of BRAFi + MEKi associates with cancer cell death and alterations in the tumor immune microenvironment; however, the links are poorly understood. We show that BRAFi + MEKi caused durable melanoma regression in an immune-mediated manner. BRAFi + MEKi treatment promoted cleavage of gasdermin E (GSDME) and release of HMGB1, markers of pyroptotic cell death. GSDME-deficient melanoma showed defective HMGB1 release, reduced tumor-associated T cell and activated dendritic cell infiltrates in response to BRAFi + MEKi, and more frequent tumor regrowth after drug removal. Importantly, BRAFi + MEKi-resistant disease lacked pyroptosis markers and showed decreased intratumoral T-cell infiltration but was sensitive to pyroptosis-inducing chemotherapy. These data implicate BRAFi + MEKi-induced pyroptosis in antitumor immune responses and highlight new therapeutic strategies for resistant melanoma. SIGNIFICANCE: Targeted inhibitors and immune checkpoint agents have advanced the care of patients with melanoma; however, detailed knowledge of the intersection between these two research areas is lacking. We describe a molecular mechanism of targeted inhibitor regulation of an immune-stimulatory form of cell death and provide a proof-of-principle salvage therapy concept for inhibitor-resistant melanoma.See related commentary by Smalley, p. 176.This article is highlighted in the In This Issue feature, p. 161.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/genetics , Pyroptosis/drug effects , Skin Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor/transplantation , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Male , Melanoma/genetics , Melanoma/immunology , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Proof of Concept Study , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Pyroptosis/genetics , Pyroptosis/immunology , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
13.
Front Oncol ; 9: 656, 2019.
Article in English | MEDLINE | ID: mdl-31396482

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) exists within a microenvironment rich in immune cells. Macrophages are particularly abundant in and around tumor tissue, and have been implicated in the growth, malignancy, and persistence of HNSCC (1). However, current literature reports variable degrees of association between the density of tumor-associated macrophages (TAMs) and clinicopathologic markers of disease (2, 3). These inconsistent findings may be a result of differences in approach to TAM detection. Authors have measured total TAMs in tumor tissue, while others have stained tumor samples for individual subtypes of TAMs, which include pro-inflammatory (M1-like) and immunosuppressive (M2-like). Our aim is to more clearly define the prognostic significance of the phenotypes of tumor-associated macrophages in HNSCC. Methods: We conducted a meta-analysis of the existing publications investigating the relationship between TAMs (total and M2-like subtype) and T stage, nodal involvement, vascular invasion, lymphatic invasion, and tumor differentiation (Figure 1). A total of 12 studies were included. Forest plots and risk ratios were generated to report overall effect. Results: Higher density of both total and M2-like subtype of TAMs in the tumor microenvironment is associated with advanced T stage, increased rates of nodal positivity, presence of vascular invasion, and presence of lymphatic invasion (p < 0.0001; Figures 2-9). There is no significant association between TAM density, either total or M2-like subtype, and tumor differentiation (Figures 10, 11). Conclusions: Increased density of TAMs, including those of the M2-like phenotype, correlate with poor clinicopathologic markers in HNSCC. Our findings warrant additional investigation into the subpopulations of TAMs, the mechanisms behind their recruitment and differentiation, and the associated influence of each phenotype on tumor growth and invasion. A greater understanding of TAM dynamics in HNSCC is critical for directing further research and employing TAM-targeted adjunct therapies.

14.
iScience ; 14: 199-209, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-30981115

ABSTRACT

The ß1 integrins, known to promote cancer progression, are abundant in extracellular vesicles (EVs). We investigated whether prostate cancer (PrCa) EVs affect anchorage-independent growth and whether ß1 integrins are required for this effect. Specifically using a cell-line-based genetic rescue and an in vivo PrCa model, we show that gradient-purified small EVs (sEVs) from either cancer cells or blood from tumor-bearing TRAMP (transgenic adenocarcinoma of the mouse prostate) mice promote anchorage-independent growth of PrCa cells. In contrast, sEVs from cultured PrCa cells harboring a short hairpin RNA to ß1, from wild-type mice or from TRAMP mice carrying a ß1 conditional ablation in the prostatic epithelium (ß1pc-/-), do not. We find that sEVs, from cancer cells or TRAMP blood, are functional and co-express ß1 and sEV markers; in contrast, sEVs from ß1pc-/-/TRAMP or wild-type mice lack ß1 and sEV markers. Our results demonstrate that ß1 integrins in tumor-cell-derived sEVs are required for stimulation of anchorage-independent growth.

15.
Otolaryngol Head Neck Surg ; 161(1): 67-73, 2019 07.
Article in English | MEDLINE | ID: mdl-30744470

ABSTRACT

OBJECTIVE: The purpose of this study is to assess CD169 expression in metastatic and nearby tumor-free lymph nodes of patients with head and neck squamous cell carcinoma (SCC). STUDY DESIGN: Retrospective analysis based on immunohistochemistry. SETTING: Tertiary care center. SUBJECTS AND METHODS: The abundance of CD169+ cells in the subcapsular sinuses (SCSs) of lymph nodes was assessed immunohistochemically in paraffin-embedded tissue samples derived from 22 patients with oral cavity and oropharyngeal SCC. RESULTS: SCSs of lymph nodes harboring metastatic SCC contained significantly fewer CD169+ macrophages (106.5 ± 113.6 cells/mm2) compared to nearby tumor-free lymph nodes (321.3 ± 173.4 cells/mm2, P < .001). This observation extended to 21 of the 22 cases investigated. In addition, 6 patients who later developed recurrent disease contained lower numbers of CD169+ cells (268.6 ± 169.5 cells/mm2) in nearby tumor-free lymph nodes compared to 341.0 ± 176.1 cells/mm2 in those who remained disease free (P = .399). Human papillomavirus (HPV)-positive patients (n = 4) had a 6-fold lower number of CD169+ cells in metastatic nodes (61.2 ± 85.5 cells/mm2) compared to nearby tumor-free lymph nodes (369.5 ± 175.5 cells/mm2, P = .028). In comparison, HPV-negative patients had only a 3-fold reduction (116.6 ± 118.5 cells/mm2 vs 310.6 ± 176.2 cells/mm2, P < .001). CONCLUSION: Metastatic spread of SCC to regional lymph nodes is associated with lower abundance of CD169+ macrophages in the SCSs of draining lymph nodes. These results set the stage for an in-depth investigation into the mechanism(s) by which metastatic SCC controls CD169+ macrophage abundance and its significance as it relates to prognosis and treatment response.


Subject(s)
Lymph Nodes/cytology , Lymphatic Metastasis/immunology , Macrophages/immunology , Neoplasm Metastasis/immunology , Sialic Acid Binding Ig-like Lectin 1/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Lymphatic Metastasis/pathology , Male , Middle Aged , Neoplasm Metastasis/pathology , Neoplasm Staging , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/pathology
16.
Front Oncol ; 8: 436, 2018.
Article in English | MEDLINE | ID: mdl-30364350

ABSTRACT

Background: Metformin, an oral anti-hyperglycemic drug which inhibits mitochondrial complex I and oxidative phosphorylation has been reported to correlate with improved outcomes in head and neck squamous cell carcinoma (HNSCC) and other cancers. This effect is postulated to occur through disruption of tumor-driven metabolic and immune dysregulation in the tumor microenvironment (TME). We report new findings on the impact of metformin on the tumor and immune elements of the TME from a clinical trial of metformin in HNSCC. Methods: Human papilloma virus-(HPV-) tobacco+ mucosal HNSCC samples (n = 12) were compared to HPV+ oropharyngeal squamous cell carcinoma (OPSCC) samples (n = 17) from patients enrolled in a clinical trial. Apoptosis in tumor samples pre- and post-treatment with metformin was compared by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Metastatic lymph nodes with extra-capsular extension (ECE) in metformin-treated patients (n = 7) were compared to archival lymph node samples with ECE (n = 11) for differences in immune markers quantified by digital image analysis using co-localization and nuclear algorithms (PD-L1, FoxP3, CD163, CD8). Results: HPV-, tobacco + HNSCC (mean Δ 13.7/high power field) specimens had a significantly higher increase in apoptosis compared to HPV+ OPSCC specimens (mean Δ 5.7/high power field) (p < 0.001). Analysis of the stroma at the invasive front in ECE nodal specimens from both HPV-HNSCC and HPV+ OPSCC metformin treated specimens showed increased CD8+ effector T cell infiltrate (mean 22.8%) compared to archival specimens (mean 10.7%) (p = 0.006). Similarly, metformin treated specimens showed an increased FoxP3+ regulatory T cell infiltrate (mean 9%) compared to non-treated archival specimens (mean 5%) (p = 0.019). Conclusions: This study presents novel data demonstrating that metformin differentially impacts HNSCC subtypes with greater apoptosis in HPV-HNSCC compared to HPV+ OPSCC. Moreover, we present the first in vivo human evidence that metformin may also trigger increased CD8+ Teff and FoxP3+ Tregs in the TME, suggesting an immunomodulatory effect in HNSCC. Further research is necessary to assess the effect of metformin on the TME of HNSCC.

17.
Vaccines (Basel) ; 6(3)2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30044426

ABSTRACT

Listeria monocytogenes, a Gram-positive facultative anaerobic bacterium, is becoming a popular vector for cancer immunotherapy. Indeed, multiple vaccines have been developed utilizing modified Listeria as a tool for generating immune responses against a variety of cancers. Moreover, over a dozen clinical trials testing Listeria cancer vaccines are currently underway, which will help to understand the utility of Listeria vaccines in cancer immunotherapy. This review aims to summarize current views on how Listeria-based vaccines induce potent antitumor immunity and the current state of Listeria-based cancer vaccines in clinical trials.

18.
J Biol Chem ; 293(43): 16940-16950, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30049794

ABSTRACT

The extracellular matrix is a master regulator of tissue homeostasis in health and disease. Here we examined how the small, leucine-rich, extracellular matrix proteoglycan decorin regulates cardiomyocyte metabolism during fasting in vivo First, we validated in Dcn-/- mice that decorin plays an essential role in autophagy induced by fasting. High-throughput metabolomics analyses of cardiac tissue in Dcn-/- mice subjected to fasting revealed striking differences in the hexosamine biosynthetic pathway resulting in aberrant cardiac O-ß-N-acetylglycosylation as compared with WT mice. Functionally, Dcn-/- mice maintained cardiac function at a level comparable with nonfasted animals whereas fasted WT mice showed reduced ejection fraction. Collectively, our results suggest that reduced sensing of nutrient deprivation in the absence of decorin preempts functional adjustments of cardiac output associated with metabolic reprogramming.


Subject(s)
Autophagy , Decorin/physiology , Extracellular Matrix/metabolism , Metabolome , Myocytes, Cardiac/pathology , Nutrients/metabolism , Animals , Cellular Reprogramming , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism
19.
Clin Cancer Res ; 24(8): 1917-1931, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29483142

ABSTRACT

Purpose: The standard treatment for organ-confined prostate cancer is surgery or radiation, and locally advanced prostate cancer is typically treated with radiotherapy alone or in combination with androgen deprivation therapy. Here, we investigated whether Stat5a/b participates in regulation of double-strand DNA break repair in prostate cancer, and whether Stat5 inhibition may provide a novel strategy to sensitize prostate cancer to radiotherapy.Experimental Design: Stat5a/b regulation of DNA repair in prostate cancer was evaluated by comet and clonogenic survival assays, followed by assays specific to homologous recombination (HR) DNA repair and nonhomologous end joining (NHEJ) DNA repair. For HR DNA repair, Stat5a/b regulation of Rad51 and the mechanisms underlying the regulation were investigated in prostate cancer cells, xenograft tumors, and patient-derived prostate cancers ex vivo in 3D explant cultures. Stat5a/b induction of Rad51 and HR DNA repair and responsiveness to radiation were evaluated in vivo in mice bearing prostate cancer xenograft tumors.Results: Stat5a/b is critical for Rad51 expression in prostate cancer via Jak2-dependent mechanisms by inducing Rad51 mRNA levels. Consistent with this, genetic knockdown of Stat5a/b suppressed HR DNA repair while not affecting NHEJ DNA repair. Pharmacologic Stat5a/b inhibition potently sensitized prostate cancer cell lines and prostate cancer tumors to radiation, while not inducing radiation sensitivity in the neighboring tissues.Conclusions: This work introduces a novel concept of a pivotal role of Jak2-Stat5a/b signaling for Rad51 expression and HR DNA repair in prostate cancer. Inhibition of Jak2-Stat5a/b signaling sensitizes prostate cancer to radiation and, therefore, may provide an adjuvant therapy for radiation to reduce radiation-induced damage to the neighboring tissues. Clin Cancer Res; 24(8); 1917-31. ©2018 AACR.


Subject(s)
DNA Repair , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Rad51 Recombinase/metabolism , Radiation Tolerance/genetics , STAT5 Transcription Factor/genetics , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Disease Models, Animal , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gene Expression , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Neoplasm Grading , Neoplasm Staging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , RNA, Small Interfering/genetics , Rad51 Recombinase/genetics , Radiation Tolerance/drug effects , Radiation, Ionizing , STAT5 Transcription Factor/antagonists & inhibitors , STAT5 Transcription Factor/metabolism , Xenograft Model Antitumor Assays
20.
PLoS One ; 13(1): e0190457, 2018.
Article in English | MEDLINE | ID: mdl-29293662

ABSTRACT

Biological aging is a complex process dependent on the interplay of cell autonomous and tissue contextual changes which occur in response to cumulative molecular stress and manifest through adaptive transcriptional reprogramming. Here we describe a transcription factor (TF) meta-analysis of gene expression datasets accrued from 18 tissue sites collected at different biological ages and from 7 different in-vitro aging models. In-vitro aging platforms included replicative senescence and an energy restriction model in quiescence (ERiQ), in which ATP was transiently reduced. TF motifs in promoter regions of trimmed sets of target genes were scanned using JASPAR and TRANSFAC. TF signatures established a global mapping of agglomerating motifs with distinct clusters when ranked hierarchically. Remarkably, the ERiQ profile was shared with the majority of in-vivo aged tissues. Fitting motifs in a minimalistic protein-protein network allowed to probe for connectivity to distinct stress sensors. The DNA damage sensors ATM and ATR linked to the subnetwork associated with senescence. By contrast, the energy sensors PTEN and AMPK connected to the nodes in the ERiQ subnetwork. These data suggest that metabolic dysfunction may be linked to transcriptional patterns characteristic of many aged tissues and distinct from cumulative DNA damage associated with senescence.


Subject(s)
Aging/metabolism , Transcription Factors/metabolism , Cluster Analysis , Humans , Promoter Regions, Genetic , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...