Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 32(23): 6710-6723, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35729790

ABSTRACT

Islands make up a large proportion of Earth's biodiversity, yet are also some of the most sensitive systems to environmental perturbation. Biogeographic theory predicts that geologic age, area, and isolation typically drive islands' diversity patterns, and thus potentially impact non-native spread and community homogenization across island systems. One limitation in testing such predictions has been the difficulty of performing comprehensive inventories of island biotas and distinguishing native from introduced taxa. Here, we use DNA metabarcoding and statistical modelling as a high throughput method to survey community-wide arthropod richness, the proportion of native and non-native species, and the incursion of non-natives into primary habitats on three archipelagos in the Pacific - the Ryukyus, the Marianas and Hawaii - which vary in age, isolation and area. Diversity patterns largely match expectations based on island biogeography theory, with the oldest and most geographically connected archipelago, the Ryukyus, showing the highest taxonomic richness and lowest proportion of introduced species. Moreover, we find evidence that forest habitats are more resilient to incursions of non-natives in the Ryukyus than in the less taxonomically rich archipelagos. Surprisingly, we do not find evidence for biotic homogenization across these three archipelagos: the assemblage of non-native species on each island is highly distinct. Our study demonstrates the potential of DNA metabarcoding to facilitate rapid estimation of biogeographic patterns, the spread of non-native species, and the resilience of ecosystems.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , Islands , Biodiversity , Introduced Species
2.
Mol Ecol ; 32(23): 6161-6176, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36156326

ABSTRACT

Current understanding of ecological and evolutionary processes underlying island biodiversity is heavily shaped by empirical data from plants and birds, although arthropods comprise the overwhelming majority of known animal species, and as such can provide key insights into processes governing biodiversity. Novel high throughput sequencing (HTS) approaches are now emerging as powerful tools to overcome limitations in the availability of arthropod biodiversity data, and hence provide insights into these processes. Here, we explored how these tools might be most effectively exploited for comprehensive and comparable inventory and monitoring of insular arthropod biodiversity. We first reviewed the strengths, limitations and potential synergies among existing approaches of high throughput barcode sequencing. We considered how this could be complemented with deep learning approaches applied to image analysis to study arthropod biodiversity. We then explored how these approaches could be implemented within the framework of an island Genomic Observatories Network (iGON) for the advancement of fundamental and applied understanding of island biodiversity. To this end, we identified seven island biology themes at the interface of ecology, evolution and conservation biology, within which collective and harmonized efforts in HTS arthropod inventory could yield significant advances in island biodiversity research.


Subject(s)
Arthropods , Animals , Arthropods/genetics , Biodiversity , Genomics , Plants/genetics , DNA Barcoding, Taxonomic/methods , Islands
3.
Curr Opin Insect Sci ; 38: 84-91, 2020 04.
Article in English | MEDLINE | ID: mdl-32240967

ABSTRACT

Classical biological control (also called importation biological control) of weeds has a remarkable track record for efficiency and safety, but further improvement is still needed, particularly to account for potential evolutionary changes after release. Here, we discuss the increasing yet limited evidence of post-introduction evolution and describe approaches to predict evolutionary change. Recent advances include using experimental evolution studies over several generations that combine -omics tools with behavioral bioassays. This novel approach in weed biocontrol is well suited to explore the potential for rapid evolutionary change in real-time and thus can be used to estimate more accurately potential benefits and risks of agents before their importation. We outline this approach with a chrysomelid beetle used to control invasive common ragweed.


Subject(s)
Ambrosia/physiology , Biological Evolution , Coleoptera/physiology , Herbivory , Pest Control, Biological/methods , Plant Weeds/physiology , Weed Control/methods , Animals
4.
PeerJ ; 8: e8225, 2020.
Article in English | MEDLINE | ID: mdl-32025365

ABSTRACT

Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.

5.
Ecol Appl ; 29(5): e01914, 2019 07.
Article in English | MEDLINE | ID: mdl-31050090

ABSTRACT

New genetic diagnostic approaches have greatly aided efforts to document global biodiversity and improve biosecurity. This is especially true for organismal groups in which species diversity has been underestimated historically due to difficulties associated with sampling, the lack of clear morphological characteristics, and/or limited availability of taxonomic expertise. Among these methods, DNA sequence barcoding (also known as "DNA barcoding") and by extension, meta-barcoding for biological communities, has emerged as one of the most frequently utilized methods for DNA-based species identifications. Unfortunately, the use of DNA barcoding is limited by the availability of complete reference libraries (i.e., a collection of DNA sequences from morphologically identified species), and by the fact that the vast majority of species do not have sequences present in reference databases. Such conditions are critical especially in tropical locations that are simultaneously biodiversity rich and suffer from a lack of exploration and DNA characterization by trained taxonomic specialists. To facilitate efforts to document biodiversity in regions lacking complete reference libraries, we developed a novel statistical approach that categorizes unidentified species as being either likely native or likely nonnative based solely on measures of nucleotide diversity. We demonstrate the utility of this approach by categorizing a large sample of specimens of terrestrial insects and spiders (collected as part of the Moorea BioCode project) using a generalized linear mixed model (GLMM). Using a training data set of known endemic (n = 45) and known introduced species (n = 102), we then estimated the likely native/nonnative status for 4,663 specimens representing an estimated 1,288 species (412 identified species), including both those specimens that were either unidentified or whose endemic/introduced status was uncertain. Using this approach, we were able to increase the number of categorized specimens by a factor of 4.4 (from 794 to 3,497), and the number of categorized species by a factor of 4.8 from (147 to 707) at a rate much greater than chance (77.6% accuracy). The study identifies phylogenetic signatures of both native and nonnative species and suggests several practical applications for this approach including monitoring biodiversity and facilitating biosecurity.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Animals , DNA , Gene Library , Phylogeny
6.
Mol Ecol ; 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30010208

ABSTRACT

The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.

7.
Mol Ecol ; 27(17): 3541-3554, 2018 09.
Article in English | MEDLINE | ID: mdl-30030868

ABSTRACT

Recent theoretical advances have hypothesized a central role of habitat persistence on population genetic structure and resulting biodiversity patterns of freshwater organisms. Here, we address the hypothesis that lotic species, or lineages adapted to comparably geologically stable running water habitats (streams and their marginal habitats), have high levels of endemicity and phylogeographic structure due to the persistent nature of their habitat. We use a nextRAD DNA sequencing approach to investigate the population structure and phylogeography of a putatively widespread New Guinean species of diving beetle, Philaccolilus ameliae (Dytiscidae). We find that P. ameliae is a complex of morphologically cryptic, but geographically and genetically well-differentiated clades. The pattern of population connectivity is consistent with theoretical predictions associated with stable lotic habitats. However, in two clades, we find a more complex pattern of low population differentiation, revealing dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart. These results, while surprising, were also consistent with the original formulation of the habitat template concept by Southwood, involving lineage-idiosyncratic evolution in response to abiotic factors. In our system, low population differentiation might reflect a young species in a phase of range expansion utilizing vast available habitat. We suggest that predictions of life history variation resulting from the dichotomy between lotic and lentic organisms require more attention to habitat characterization and microhabitat choice. Our results also underpin the necessity to study fine-scale processes but at a larger geographical scale, as compared to solely documenting macroecological patterns, to understand ecological drivers of regional biodiversity. Comprehensive sampling especially of tropical lineages in complex and threatened environments such as New Guinea remains a critical challenge.


Subject(s)
Coleoptera/classification , Ecosystem , Genetics, Population , Water Movements , Animals , Biodiversity , New Guinea , Phylogeny , Phylogeography , Rivers , Tropical Climate
8.
Curr Biol ; 28(6): 941-947.e3, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29526585

ABSTRACT

Insular adaptive radiations in which repeated bouts of diversification lead to phenotypically similar sets of taxa serve to highlight predictability in the evolutionary process [1]. However, examples of such replicated events are rare. Cross-clade comparisons of adaptive radiations are much needed to determine whether similar ecological opportunities can lead to the same outcomes. Here, we report a heretofore uncovered adaptive radiation of Hawaiian stick spiders (Theridiidae, Ariamnes) in which different species exhibit a set of discrete ecomorphs associated with different microhabitats. The three primary ecomorphs (gold, dark, and matte white) generally co-occur in native forest habitats. Phylogenetic reconstruction mapped onto the well-known chronosequence of the Hawaiian Islands shows both that this lineage colonized the islands only once and relatively recently (2-3 mya, when Kauai and Oahu were the only high islands in the archipelago) and that the distinct ecomorphs evolved independently multiple times following colonization of new islands. This parallel evolution of ecomorphs matches that of "spiny-leg" long-jawed spiders (Tetragnathidae, Tetragnatha), also in Hawaii [2]. Both lineages are free living, and both have related lineages in the Hawaiian Islands that show quite different patterns of diversification with no evidence of deterministic evolution. We argue that repeated evolution of ecomorphs results from a rugged adaptive landscape, with the few peaks associated with camouflage for these free-living taxa against the markedly low diversity of predators on isolated islands. These features, coupled with a limited genetic toolbox and reduced dispersal between islands, appear to be common to situations of repeated evolution of ecomorphs.


Subject(s)
Adaptation, Physiological/genetics , Spiders/genetics , Animals , Biological Evolution , Ecological and Environmental Phenomena , Ecosystem , Evolution, Molecular , Genetic Speciation , Genetic Variation/genetics , Geography , Hawaii , Phenotype , Phylogeny , Species Specificity
9.
Ecol Appl ; 27(6): 1827-1837, 2017 09.
Article in English | MEDLINE | ID: mdl-28459124

ABSTRACT

The emergence rate of new plant diseases is increasing due to novel introductions, climate change, and changes in vector populations, posing risks to agricultural sustainability. Assessing and managing future disease risks depends on understanding the causes of contemporary and historical emergence events. Since the mid-1990s, potato growers in the western United States, Mexico, and Central America have experienced severe yield loss from Zebra Chip disease and have responded by increasing insecticide use to suppress populations of the insect vector, the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). Despite the severe nature of Zebra Chip outbreaks, the causes of emergence remain unknown. We tested the hypotheses that (1) B. cockerelli occupancy has increased over the last century in California and (2) such increases are related to climate change, specifically warmer winters. We compiled a data set of 87,000 museum specimen occurrence records across the order Hemiptera collected between 1900 and 2014. We then analyzed changes in B. cockerelli distribution using a hierarchical occupancy model using changes in background species lists to correct for collecting effort. We found evidence that B. cockerelli occupancy has increased over the last century. However, these changes appear to be unrelated to climate changes, at least at the scale of our analysis. To the extent that species occupancy is related to abundance, our analysis provides the first quantitative support for the hypothesis that B. cockerelli population abundance has increased, but further work is needed to link B. cockerelli population dynamics to Zebra Chip epidemics. Finally, we demonstrate how this historical macro-ecological approach provides a general framework for comparative risk assessment of future pest and insect vector outbreaks.


Subject(s)
Animal Distribution , Hemiptera/physiology , Insect Vectors/physiology , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Animals , California , Museums , Population Dynamics , Population Growth , Rhizobiaceae/physiology , Time Factors
10.
PLoS One ; 11(11): e0165105, 2016.
Article in English | MEDLINE | ID: mdl-27855173

ABSTRACT

The whitefly Bemisia tabaci sibling species (sibsp.) group comprises morphologically indiscernible lineages of well-known exemplars referred to as biotypes. It is distributed throughout tropical and subtropical latitudes and includes the contemporary invasive haplotypes, termed B and Q. Several well-studied B. tabaci biotypes exhibit ecological and biological diversity, however, most members are poorly studied or completely uncharacterized. Genetic studies have revealed substantial diversity within the group based on a fragment of the mitochondrial cytochrome oxidase I (mtCOI) sequence (haplotypes), with other tested markers being less useful for deep phylogenetic comparisons. The view of global relationships within the B. tabaci sibsp. group is largely derived from this single marker, making assessment of gene flow and genetic structure difficult at the population level. Here, the population structure was explored for B. tabaci in a global context using nuclear data from variable microsatellite markers. Worldwide collections were examined representing most of the available diversity, including known monophagous, polyphagous, invasive, and indigenous haplotypes. Well-characterized biotypes and other related geographic lineages discovered represented highly differentiated genetic clusters with little or no evidence of gene flow. The invasive B and Q biotypes exhibited moderate to high levels of genetic diversity, suggesting that they stemmed from large founding populations that have maintained ancestral variation, despite homogenizing effects, possibly due to human-mediated among-population gene flow. Results of the microsatellite analyses are in general agreement with published mtCOI phylogenies; however, notable conflicts exist between the nuclear and mitochondrial relationships, highlighting the need for a multifaceted approach to delineate the evolutionary history of the group. This study supports the hypothesis that the extant B. tabaci sibsp. group contains ancient genetic entities and highlights the vast cryptic diversity throughout the genome in the group.


Subject(s)
Genetic Variation , Genetics, Population , Hemiptera/genetics , Hemiptera/virology , Insect Vectors/virology , Alleles , Animals , Bayes Theorem , Biological Evolution , Cluster Analysis , DNA, Mitochondrial , Genotype , Hemiptera/classification , Microsatellite Repeats , Phylogeny , Phylogeography , Principal Component Analysis , Siblings
11.
Glob Chang Biol ; 22(3): 1046-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26663622

ABSTRACT

Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change.


Subject(s)
Bees/physiology , Ecosystem , Pollination , Agriculture , Animals , California , Cities , Seasons
12.
PeerJ ; 3: e1141, 2015.
Article in English | MEDLINE | ID: mdl-26290795

ABSTRACT

Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.

13.
Nature ; 509(7500): 297-8, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24828187
14.
PLoS One ; 9(1): e86357, 2014.
Article in English | MEDLINE | ID: mdl-24466050

ABSTRACT

Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis), a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1) rates of bee visitation, 2) viable seed set, and 3) the efficiency of pollination (relationship between bee visitation and seed set). We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services.


Subject(s)
Agriculture , Bees/physiology , Centaurea/physiology , Cities , Ecosystem , Pollination/physiology , Animals , California , Geography , Human Activities , Humans , Seeds/growth & development
15.
Evolution ; 66(9): 2798-814, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22946804

ABSTRACT

Adaptive radiation involves ecological shifts coupled with isolation of gene pools. However, we know little about what drives the initial stages of divergence. We study a system in which ecological diversification is found within a chronologically well-defined geological matrix to provide insight into this enigmatic phase of radiation. We tested the hypothesis that a period of geographic isolation precedes ecological specialization in an adaptive radiation of host-specialized Hawaiian planthoppers. We examined population structure and history using mitochondrial and multiple independent microsatellite loci in a species whose geographic distribution on the island of Hawaii enabled us to observe the chronology of divergence in its very earliest stages. We found that genetic divergence is associated with geographic features but not different plant hosts and that divergence times are very recent and on the same timescales as the dynamic geology of the island. Our results suggest an important role for geography in the dynamics of the early stages of divergence.


Subject(s)
Adaptation, Biological , Ecosystem , Genetic Speciation , Hemiptera/genetics , Reproductive Isolation , Animals , Asteraceae , Gene Flow , Genes, Mitochondrial , Genetic Variation , Geography , Hawaii , Microsatellite Repeats
16.
Evol Appl ; 5(5): 419-23, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22949918
17.
Mol Ecol ; 21(17): 4242-56, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22849440

ABSTRACT

Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531-281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in F(ST) is explained by these models, with geographical distance and least-cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high-elevation environments.


Subject(s)
Butterflies/genetics , Environment , Genetic Variation , Genetics, Population , Animals , Bayes Theorem , California , Geography , Microsatellite Repeats , Molecular Sequence Data , Population Density , Regression Analysis
18.
Evol Biol ; 39(2): 192-206, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22707805

ABSTRACT

Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation.

19.
PLoS One ; 7(4): e35601, 2012.
Article in English | MEDLINE | ID: mdl-22539983

ABSTRACT

The spider mite Tetranychus evansi is an emerging pest of solanaceous crops worldwide. Like many other emerging pests, its small size, confusing taxonomy, complex history of associations with humans, and propensity to start new populations from small inocula, make the study of its invasion biology difficult. Here, we use recent developments in Approximate Bayesian Computation (ABC) and variation in multi-locus genetic markers to reconstruct the complex historical demography of this cryptic invasive pest. By distinguishing among multiple pathways and timing of introductions, we find evidence for the "bridgehead effect", in which one invasion serves as source for subsequent invasions. Tetranychus evansi populations in Europe and Africa resulted from at least three independent introductions from South America and involved mites from two distinct sources in Brazil, corresponding to highly divergent mitochondrial DNA lineages. Mites from southwest Brazil (BR-SW) colonized the African continent, and from there Europe through two pathways in a "bridgehead" type pattern. One pathway resulted in a widespread invasion, not only to Europe, but also to other regions in Africa, southern Europe and eastern Asia. The second pathway involved the mixture with a second introduction from BR-SW leading to an admixed population in southern Spain. Admixture was also detected between invasive populations in Portugal. A third introduction from the Brazilian Atlantic region resulted in only a limited invasion in Europe. This study illustrates that ABC methods can provide insights into, and distinguish among, complex invasion scenarios. These processes are critical not only in understanding the biology of invasions, but also in refining management strategies for invasive species. For example, while reported observations of the mite and outbreaks in the invaded areas were largely consistent with estimates of geographical expansion from the ABC approach, historical observations failed to recognize the complex pathways involved and the corresponding effects on genetic diversity.


Subject(s)
Tetranychidae/genetics , Animals , Bayes Theorem , Cluster Analysis , DNA, Mitochondrial , Genetic Variation , Introduced Species , Tetranychidae/physiology
20.
Trends Ecol Evol ; 27(1): 47-56, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22014977

ABSTRACT

Tests of hypotheses about the biogeographical consequences of long-distance dispersal have long eluded biologists, largely because of the rarity and presumed unpredictability of such events. Here, we examine data for terrestrial (including littoral) organisms in the Pacific to show that knowledge of dispersal by wind, birds and oceanic drift or rafting, coupled with information about the natural environment and biology of the organisms, can be used to generate broad biogeographic predictions. We then examine the predictions in the context of the origin, frequency of arrival and location of establishment of dispersed organisms, as well as subsequent patterns of endemism and diversification on remote islands. The predicted patterns are being increasingly supported by phylogenetic data for both terrestrial and littoral organisms.


Subject(s)
Models, Theoretical , Biodiversity , Pacific Ocean , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...