Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Med Biol ; 69(5)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38306974

ABSTRACT

Objective.Computed tomography (CT) has advanced since its inception, with breakthroughs such as dual-energy CT (DECT), which extracts additional information by acquiring two sets of data at different energies. As high-flux photon-counting detectors (PCDs) become available, PCD-CT is also becoming a reality. PCD-CT can acquire multi-energy data sets in a single scan by spectrally binning the incident x-ray beam. With this, K-edge imaging becomes possible, allowing high atomic number (high-Z) contrast materials to be distinguished and quantified. In this study, we demonstrated that DECT methods can be converted to PCD-CT systems by extending the method of Bourqueet al(2014). We optimized the energy bins of the PCD for this purpose and expanded the capabilities by employing K-edge subtraction imaging to separate a high-atomic number contrast material.Approach.The method decomposes materials into their effective atomic number (Zeff) and electron density relative to water (ρe). The model was calibrated and evaluated using tissue-equivalent materials from the RMI Gammex electron density phantom with knownρevalues and elemental compositions. TheoreticalZeffvalues were found for the appropriate energy ranges using the elemental composition of the materials.Zeffvaried slightly with energy but was considered a systematic error. Anex vivobovine tissue sample was decomposed to evaluate the model further and was injected with gold chloride to demonstrate the separation of a K-edge contrast agent.Main results.The mean root mean squared percent errors on the extractedZeffandρefor PCD-CT were 0.76% and 0.72%, respectively and 1.77% and 1.98% for DECT. The tissue types in theex vivobovine tissue sample were also correctly identified after decomposition. Additionally, gold chloride was separated from theex vivotissue sample with K-edge imaging.Significance.PCD-CT offers the ability to employ DECT material decomposition methods, along with providing additional capabilities such as K-edge imaging.


Subject(s)
Gold Compounds , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Contrast Media , Photons
2.
Phys Med Biol ; 69(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38041870

ABSTRACT

Objective. X-ray spectral computed tomography (CT) allows for material decomposition (MD). This study compared a one-step material decomposition MD algorithm with a two-step reconstruction MD algorithm using acquisitions of a prototype CT scanner with a photon-counting detector (PCD).Approach. MD and CT reconstruction may be done in two successive steps, i.e. decompose the data in material sinograms which are then reconstructed in material CT images, or jointly in a one-step algorithm. The one-step algorithm reconstructed material CT images by maximizing their Poisson log-likelihood in the projection domain with a spatial regularization in the image domain. The two-step algorithm maximized first the Poisson log-likelihood without regularization to decompose the data in material sinograms. These sinograms were then reconstructed into material CT images by least squares minimization, with the same spatial regularization as the one step algorithm. A phantom simulating the CT angiography clinical task was scanned and the data used to measure noise and spatial resolution properties. Low dose carotid CT angiographies of 4 patients were also reconstructed with both algorithms and analyzed by a radiologist. The image quality and diagnostic clinical task were evaluated with a clinical score.Main results. The phantom data processing demonstrated that the one-step algorithm had a better spatial resolution at the same noise level or a decreased noise value at matching spatial resolution. Regularization parameters leading to a fair comparison were selected for the patient data reconstruction. On the patient images, the one-step images received higher scores compared to the two-step algorithm for image quality and diagnostic.Significance. Both phantom and patient data demonstrated how a one-step algorithm improves spectral CT image quality over the implemented two-step algorithm but requires a longer computation time. At a low radiation dose, the one-step algorithm presented good to excellent clinical scores for all the spectral CT images.


Subject(s)
Quality Improvement , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Algorithms , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
3.
Diagn Interv Imaging ; 104(10): 490-499, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37248095

ABSTRACT

PURPOSE: The purpose of this study was to investigate the feasibility of gadolinium-K-edge-angiography (angio-Gd-K-edge) with gadolinium-based contrast agents (GBCAs) as obtained with spectral photon counting CT (SPCCT) in atherosclerotic rabbits. MATERIALS AND METHODS: Seven atherosclerotic rabbits underwent angio-SPCCT acquisitions with two GBCAs, with similar intravenous injection protocol. Conventional and angio-Gd-K-edge images were reconstructed with the same parameters. Regions of interest were traced in different locations of the aorta and its branches. Hounsfield unit values, Gd concentrations, signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated and compared. The maximum diameter and the diameter of the aorta in regard to atherosclerotic plaques were measured by two observers. Images were subjectively evaluated regarding vessels' enhancement, artefacts, border sharpness and overall image quality. RESULTS: In the analyzable six rabbits, Gd-K-edge allowed visualization of target vessels and no other structures. HU values and Gd concentrations were greatest in the largest artery (descending aorta, 5.6 ± 0.8 [SD] mm), and lowest in the smallest (renal arteries, 2.1 ± 0.3 mm). While greater for conventional images, CNR and SNR were satisfactory for both images (all P < 0.001). For one observer there were no statistically significant differences in either maximum or plaque-diameters (P = 0.45 and all P > 0.05 in post-hoc analysis, respectively). For the second observer, there were no significant differences for images reconstructed with the same parameters (all P < 0.05). All subjective criteria scored higher for conventional images compared to K-edge (all P < 0.01), with the highest scores for enhancement (4.3-4.4 vs. 3.1-3.4). CONCLUSION: With SPCCT, angio-Gd-K-edge after injection of GBCAs in atherosclerotic rabbits is feasible and allows for angiography-like visualization of small arteries and for the reliable measurement of their diameters.


Subject(s)
Gadolinium , Tomography, X-Ray Computed , Animals , Rabbits , Tomography, X-Ray Computed/methods , Angiography , Contrast Media , Abdomen
4.
Biomed Phys Eng Express ; 9(2)2023 02 10.
Article in English | MEDLINE | ID: mdl-36724499

ABSTRACT

The goal of this work was to build an anthropomorphic thorax phantom capable of breathing motion with materials mimicking human tissues in x-ray imaging applications. The thorax phantom, named Casper, was composed of resin (body), foam (lungs), glow polyactic acid (bones) and natural polyactic acid (tumours placed in the lungs). X-ray attenuation properties of all materials prior to manufacturing were evaluated by means of photon-counting computed tomography (CT) imaging on a table-top system. Breathing motion was achieved by a scotch-yoke mechanism with diaphragm motion frequencies of 10-20 rpm and displacements of 1 to 2 cm. Casper was manufactured by means of 3D printing of moulds and ribs and assembled in a complex process. The final phantom was then scanned using a clinical CT scanner to evaluate material CT numbers and the extent of tumour motion. Casper CT numbers were close to human CT numbers for soft tissue (46 HU), ribs (125 HU), lungs (-840 HU) and tumours (-45 HU). For a 2 cm diaphragm displacement the largest tumour displacement was 0.7 cm. The five tumour volumes were accurately assessed in the static CT images with a mean absolute error of 4.3%. Tumour sizes were either underestimated for smaller tumours or overestimated for larger tumours in dynamic CT images due to motion blurring with a mean absolute difference from true volumes of 10.3%. More Casper information including a motion movie and manufacturing data can be downloaded from http://web.uvic.ca/~bazalova/Casper/.


Subject(s)
Neoplasms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Thorax/diagnostic imaging , Respiration , Phantoms, Imaging , Ribs
5.
Med Phys ; 50(1): 380-396, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36227611

ABSTRACT

BACKGROUND: Metal artifacts have been an outstanding issue in computed tomography (CT) since its first uses in the clinic and continue to interfere. Metal artifact reduction (MAR) methods continue to be proposed and photon-counting detectors (PCDs) have recently been the subject of research toward this purpose. PCDs offer the ability to distinguish the energy of incident x-rays and sort them in a set number of energy bins. High-energy data captured using PCDs have been shown to reduce metal artifacts in reconstructions due to reduced beam hardening. PURPOSE: High-energy reconstructions using PCD-CT have their drawbacks, such as reduced image contrast and increased noise. Here, we demonstrate a MAR algorithm, trace replacement MAR (TRMAR), in which the data corrupted by metal artifacts in full energy spectrum projections are corrected using the high-energy data captured during the same scan. The resulting reconstructions offer similar MAR to that seen in high-energy reconstructions, but with improved image quality. METHODS: Experimental data were collected using a bench-top PCD-CT system with a cadmium zinc telluride PCD. Simulations were performed to determine the optimal high-energy threshold and to test TRMAR in simulations using the XCAT phantom and a biological sample. For experiments a 100-mm diameter cylindrical phantom containing vials of water, two screws, various densities of Ca(ClO4 )2 , and a spatial resolution phantom was imaged with and without the screws. The screws were segmented in the initial reconstruction and forward projected to identify them in the sinogram space in order to perform TRMAR. The resulting reconstructions were compared to the control and to reconstructions corrected using normalized metal artifact reduction (NMAR). Additionally, a beef short rib was imaged with and without metal to provide a more realistic phantom. RESULTS: XCAT simulations showed a reduction in the streak artifact from -978 HU in uncorrected images to -10 HU with TRMAR. The magnitude of the metal artifact in uncorrected images of the 100-mm phantom was -442 HU, compared to the desired -81 HU with no metal. TRMAR reduced the magnitude of the artifact to -142 HU, with NMAR reducing the magnitude to -96 HU. Relative image noise was reduced from 176% in the high-energy image to 56% using TRMAR. Density quantification was better with NMAR, with the Ca(ClO4 )2 vial affected most by metal artifacts showing 0.8% error compared to 2.1% with TRMAR. Small features were preserved to a greater extent with TRMAR, with the limiting spatial frequency at 20% of the MTF fully maintained at 1.31 lp/mm, while with NMAR it was reduced to 1.22 lp/mm. Images of the beef short rib showed better delineation of the shape of the metal using TRMAR. CONCLUSIONS: NMAR offers slightly better performance compared to TRMAR in streak reduction and image quality metrics. However, TRMAR is less susceptible to metal segmentation errors and can closely approximate the reduction in the streak metal artifact seen in NMAR at 1/3 the computation time. With the recent introduction of PCD-CT into the clinic, TRMAR offers notable potential for fast, effective MAR.


Subject(s)
Artifacts , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Metals , Algorithms , Physical Phenomena , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
6.
Radiology ; 303(2): 303-313, 2022 05.
Article in English | MEDLINE | ID: mdl-35166583

ABSTRACT

Background Spatial resolution, soft-tissue contrast, and dose-efficient capabilities of photon-counting CT (PCCT) potentially allow a better quality and diagnostic confidence of coronary CT angiography (CCTA) in comparison to conventional CT. Purpose To compare the quality of CCTA scans obtained with a clinical prototype PCCT system and an energy-integrating detector (EID) dual-layer CT (DLCT) system. Materials and Methods In this prospective board-approved study with informed consent, participants with coronary artery disease underwent retrospective electrocardiographically gated CCTA with both systems after injection of 65-75 mL of 400 mg/mL iodinated contrast agent at 5 mL/sec. A prior phantom task-based quality assessment of the detectability index of coronary lesions was performed. Ultra-high-resolution parameters were used for PCCT (1024 matrix, 0.25-mm section thickness) and EID DLCT (512 matrix, 0.67-mm section thickness). Three cardiac radiologists independently performed a blinded analysis using a five-point quality score (1 = insufficient, 5 = excellent) for overall image quality, diagnostic confidence, and diagnostic quality of calcifications, stents, and noncalcified plaques. A logistic regression model, adjusted for radiologists, was used to evaluate the proportion of improvement in scores with the best method. Results Fourteen consecutive participants (12 men; mean age, 61 years ± 17) were enrolled. Scores of overall quality and diagnostic confidence were higher with PCCT images with a median of 5 (interquartile range [IQR], 2) and 5 (IQR, 1) versus 4 (IQR, 1) and 4 (IQR, 3) with EID DLCT images, using a mean tube current of 255 mAs ± 0 versus 349 mAs ± 111 for EID DLCT images (P < .01). Proportions of improvement with PCCT images for quality of calcification, stent, and noncalcified plaque were 100%, 92% (95% CI: 71, 98), and 45% (95% CI: 28, 63), respectively. In the phantom study, detectability indexes were 2.3-fold higher for lumen and 2.9-fold higher for noncalcified plaques with PCCT images. Conclusion Coronary CT angiography with a photon-counting CT system demonstrated in humans an improved image quality and diagnostic confidence compared with an energy-integrating dual-layer CT. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Sandfort and Bluemke in this issue.


Subject(s)
Computed Tomography Angiography , Photons , Computed Tomography Angiography/methods , Female , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies , Tomography, X-Ray Computed/methods
7.
Invest Radiol ; 57(4): 212-221, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34711766

ABSTRACT

OBJECTIVES: The aim of this study is to compare the image quality of in vivo coronary stents between an energy integrating detectors dual-layer computed tomography (EID-DLCT) and a clinical prototype of spectral photon counting computed tomography (SPCCT). MATERIALS AND METHODS: In January to June 2021, consecutive patients with coronary stents were prospectively enrolled to undergo a coronary computed tomography (CT) with an EID-DLCT (IQon, Philips) and an SPCCT (Philips). The study was approved by the local ethical committee and patients signed an informed consent. A retrospectively electrocardiogram-gated acquisition was performed with optimized matching parameters on the 2 scanners (EID-DLCT: collimation, 64 × 0.625 mm; kVp, 120, automatic exposure control with target current at 255 mAs; rotation time, 0.27 seconds; SPCCT: collimation, 64 × 0.275 mm; kVp, 120; mAs, 255; rotation time, 0.33 seconds). The injection protocol was the same on both scanners: 65 to 75 mL of Iomeron (Bracco) at 5 mL/s. Images were reconstructed with slice thickness of 0.67 mm, 512 matrix, XCB (Xres cardiac standard) and XCD (Xres cardiac detailed) kernel, iDose 3 for EID-DLCT and 0.25-mm slice thickness, 1024 matrix, Detailed 2 and Sharp kernel, and iDose 6 for SPCCT. Two experienced observers measured the proximal and distal external and internal diameters of the stents to quantify blooming artifacts. Regions of interest were drawn in the lumen of the stent and of the upstream coronary artery. The difference (Δ S-C) between the respective attenuation values was calculated as a quantification of stent-induced artifacts on intrastent image quality. For subjective image quality, 3 experienced observers graded with a 4-point scale the image quality of different parameters: coronary wall before the stent, stent lumen, stent structure, calcifications surrounding the stent, and beam-hardening artifacts. RESULTS: Eight patients (age, 68 years [interquartile range, 8]; all men; body mass index, 26.2 kg/m2 [interquartile range, 4.2]) with 16 stents were scanned. Five stents were not evaluable owing to motion artifacts on the SPCCT. Of the remaining, all were drug eluting stents, of which 6 were platinum-chromium, 3 were cobalt-platinum-iridium, and 1 was stainless steel. For 1 stent, no information could be retrieved. Radiation dose was lower with the SPCCT (fixed CT dose index of 25.7 mGy for SPCCT vs median CT dose index of 35.7 [IQ = 13.6] mGy; P = 0.02). For 1 stent, the internal diameter was not assessable on EID-DLCT. External diameters were smaller and internal diameters were larger with SPCCT (all P < 0.05). Consequently, blooming artifacts were reduced on SPCCT (P < 0.05). Whereas Hounsfield unit values within the coronary arteries on the 2 scanners were similar, the Δ S-C was lower for SPCCT-Sharp as compared with EID-DLCT-XCD and SPCCT-Detailed 2 (P < 0.05). The SPCCT received higher subjective scores than EID-DLCT for stent lumen, stent structure, surrounding calcifications and beam-hardening for both Detailed 2 and Sharp (all P ≤ 0.05). The SPCCT-Sharp was judged better for stent structure and beam-hardening assessment as compared with SPCCT-Detailed 2. CONCLUSION: Spectral photon counting CT demonstrated improved objective and subjective image quality as compared with EID-DLCT for the evaluation of coronary stents even with a reduced radiation dose.


Subject(s)
Computed Tomography Angiography , Platinum , Aged , Computed Tomography Angiography/methods , Coronary Angiography/methods , Humans , Male , Phantoms, Imaging , Photons , Retrospective Studies , Stents , Tomography, X-Ray Computed/methods
8.
Eur Radiol ; 32(1): 524-532, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34185147

ABSTRACT

OBJECTIVES: To evaluate the image quality (IQ) of a spectral photon-counting CT (SPCCT) using filtered back projection (FBP) and hybrid iterative reconstruction (IR) algorithms (iDose4), in comparison with a dual-layer CT (DLCT) system, and to choose the best image quality according to the IR level for SPCCT. METHODS: Two phantoms were scanned using a standard lung protocol (120 kVp, 40 mAs) with SPCCT and DLCT systems. Raw data were reconstructed using FBP and 9 iDose4 levels (i1/i2/i3/i4/i5/i6/i7/i9/i11) for SPCCT and 7 for DLCT (i1/i2/i3/i4/i5/i6/i7). Noise power spectrum and task-based transfer function (TTF) were computed. Detectability index (d') was computed for detection of 4 mm ground-glass nodule (GGN) and solid nodule. Two chest radiologists performed an IQ evaluation (noise/nodule sharpness/nodule conspicuity/overall IQ) in consensus, and chose the best image for SPCCT. RESULTS: Noise magnitude was -47% ± 2% lower on average with SPCCT than with DLCT for iDose4 range from i1 to i6. Average NPS spatial frequencies increased for SPCCT in comparison with DLCT. TTF also increased, except for the air insert with FBP, and i1/i2/i3. Higher detectability was found for SPCCT for both GGN and solid nodules. IQ for both types of nodule was rated consistently higher with SPCCT than with DLCT for the same iDose4 level. For SPCCT and both nodules, the scores for noise and conspicuity improved with increasing iDose4 level. iDose4 level 6 provided the best subjective IQ for both types of nodule. CONCLUSIONS: Higher IQ for GGN and solid nodules was demonstrated with SPCCT compared with DLCT with better detectability using iDose4. KEY POINTS: Using spectral photon-counting CT compared with dual-layer CT, noise magnitude was reduced with improvements in spatial resolution and detectability of ground-glass nodules and solid lung nodules. As the iDose4 level increased, noise magnitude was reduced and detectability of ground-glass and solid lung nodules was better for both CT systems. For spectral photon-counting CT imaging, two chest radiologists determined iDose4 level 6 as the best image quality for detecting ground-glass nodules and solid lung nodules.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed , Algorithms , Humans , Lung/diagnostic imaging , Phantoms, Imaging , Radiation Dosage
9.
J Clin Med ; 10(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34945053

ABSTRACT

The X-ray imaging field is currently undergoing a period of rapid technological innovation in diagnostic imaging equipment. An important recent development is the advent of new X-ray detectors, i.e., photon-counting detectors (PCD), which have been introduced in recent clinical prototype systems, called PCD computed tomography (PCD-CT) or photon-counting CT (PCCT) or spectral photon-counting CT (SPCCT) systems. PCD allows a pixel up to 200 microns pixels at iso-center, which is much smaller than that can be obtained with conventional energy integrating detectors (EID). PCDs have also a higher dose efficiency than EID mainly because of electronic noise suppression. In addition, the energy-resolving capabilities of these detectors allow generating spectral basis imaging, such as the mono-energetic images or the water/iodine material images as well as the K-edge imaging of a contrast agent based on atoms of high atomic number. In recent years, studies have therefore been conducted to determine the potential of PCD-CT as an alternative to conventional CT for chest imaging.

10.
Diagn Interv Imaging ; 102(5): 305-312, 2021 May.
Article in English | MEDLINE | ID: mdl-33610503

ABSTRACT

PURPOSE: The purpose of this study was to characterize the technical capabilities and feasibility of a large field-of-view clinical spectral photon-counting computed tomography (SPCCT) prototype for high-resolution (HR) lung imaging. MATERIALS AND METHODS: Measurement of modulation transfer function (MTF) and acquisition of a line pairs phantom were performed. An anthropomorphic lung nodule phantom was scanned with standard (120kVp, 62mAs), low (120kVp, 11mAs), and ultra-low (80kVp, 3mAs) radiation doses. A human volunteer underwent standard (120kVp, 63mAs) and low (120kVp, 11mAs) dose scans after approval by the ethics committee. HR images were reconstructed with 1024 matrix, 300mm field of view and 0.25mm slice thickness using a filtered-back projection (FBP) and two levels of iterative reconstruction (iDose 5 and 9). The conspicuity and sharpness of various lung structures (distal airways, vessels, fissures and proximal bronchial wall), image noise, and overall image quality were independently analyzed by three radiologists and compared to a previous HR lung CT examination of the same volunteer performed with a conventional CT equipped with energy integrating detectors (120kVp, 10mAs, FBP). RESULTS: Ten percent MTF was measured at 22.3lp/cm with a cut-off at 31lp/cm. Up to 28lp/cm were depicted. While mixed and solid nodules were easily depicted on standard and low-dose phantom images, higher iDose levels and slice thicknesses (1mm) were needed to visualize ground-glass components on ultra-low-dose images. Standard dose SPCCT images of in vivo lung structures were of greater conspicuity and sharpness, with greater overall image quality, and similar image noise (despite a flux reduction of 23%) to conventional CT images. Low-dose SPCCT images were of greater or similar conspicuity and sharpness, similar overall image quality, and lower but acceptable image noise (despite a flux reduction of 89%). CONCLUSIONS: A large field-of-view SPCCT prototype demonstrates HR technical capabilities and high image quality for high resolution lung CT in human.


Subject(s)
Lung , Tomography, X-Ray Computed , Algorithms , Feasibility Studies , Humans , Image Processing, Computer-Assisted , Lung/diagnostic imaging , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...