Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Trends Mol Med ; 30(5): 499-515, 2024 May.
Article in English | MEDLINE | ID: mdl-38582623

ABSTRACT

The clinical use of cell-free DNA (cfDNA) methylation in managing lung cancer depends on its ability to differentiate between malignant and healthy cells, assign methylation changes to specific tissue sources, and elucidate opportunities for targeted therapy. From a technical standpoint, cfDNA methylation analysis is primed as a potential clinical tool for lung cancer screening, early diagnosis, prognostication, and treatment, pending the outcome of elaborate validation studies. Here, we discuss the current state of the art in cfDNA methylation analysis, examine the unique features and limitations of these new methods in a clinical context, propose two models for applying cfDNA methylation data for lung cancer screening, and discuss future research directions.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , DNA Methylation , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/genetics , Prognosis , Early Detection of Cancer/methods , Disease Management
2.
Cancers (Basel) ; 16(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473261

ABSTRACT

Cutaneous melanoma is rapidly on the rise globally, surpassing the growth rate of other cancers, with metastasis being the primary cause of death in melanoma patients. Consequently, understanding the mechanisms behind this metastatic process and exploring innovative treatments is of paramount importance. Recent research has shown promise in unravelling the role of epigenetic factors in melanoma progression to metastasis. While DNA hypermethylation at gene promoters typically suppresses gene expression, we have contributed to establishing the newly understood mechanism of paradoxical activation of genes via DNA methylation, where high methylation coincides with increased gene activity. This mechanism challenges the conventional paradigm that promoter methylation solely silences genes, suggesting that, for specific genes, it might actually activate them. Traditionally, altering DNA methylation in vitro has involved using global demethylating agents, which is insufficient for studying the mechanism and testing the direct consequence of gene methylation changes. To investigate promoter hypermethylation and its association with gene activation, we employed a novel approach utilising a CRISPR-SunTag All-in-one system. Here, we focused on editing the DNA methylation of a specific gene promoter segment (EBF3) in melanoma cells using the All-in-one system. Using bisulfite sequencing and qPCR with RNA-Seq, we successfully demonstrated highly effective methylation and demethylation of the EBF3 promoter, with subsequent gene expression changes, to establish and validate the paradoxical role of DNA methylation. Further, our study provides novel insights into the function of the EBF3 gene, which remains largely unknown. Overall, this study challenges the conventional view of methylation as solely a gene-silencing mechanism and demonstrates a potential function of EBF3 in IFN pathway signalling, potentially uncovering new insights into epigenetic drivers of malignancy and metastasis.

3.
Int Rev Cell Mol Biol ; 383: 41-66, 2024.
Article in English | MEDLINE | ID: mdl-38359970

ABSTRACT

Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.


Subject(s)
Neuroendocrine Tumors , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Androgen Antagonists , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Epigenesis, Genetic
4.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255946

ABSTRACT

Metastatic progression is a complex, multistep process and the leading cause of cancer mortality. There is growing evidence that emphasises the significance of epigenetic modification, specifically DNA methylation and histone modifications, in influencing colorectal (CRC) metastasis. Epigenetic modifications influence the expression of genes involved in various cellular processes, including the pathways associated with metastasis. These modifications could contribute to metastatic progression by enhancing oncogenes and silencing tumour suppressor genes. Moreover, specific epigenetic alterations enable cancer cells to acquire invasive and metastatic characteristics by altering cell adhesion, migration, and invasion-related pathways. Exploring the involvement of DNA methylation and histone modification is crucial for identifying biomarkers that impact cancer prediction for metastasis in CRC. This review provides a summary of the potential epigenetic biomarkers associated with metastasis in CRC, particularly DNA methylation and histone modifications, and examines the pathways associated with these biomarkers.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Humans , Biomarkers , Cell Adhesion , Epigenesis, Genetic , Colorectal Neoplasms/genetics
5.
STAR Protoc ; 4(4): 102714, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37950864

ABSTRACT

Aberrant DNA methylation is a universal feature of cancer. Here, we present a protocol for generating high-quality genome-scale DNA methylation sequencing data from a variety of human cancer biospecimens including immortalized cell lines, fresh-frozen surgical resections, and formalin-fixed paraffin-embedded tissues. We describe steps for DNA extraction considerations, reduced representation bisulfite sequencing, data processing and quality control, and downstream data analysis and integration. This protocol is also applicable for other human diseases and methylome profiling in other organisms. For complete details on the use and execution of this protocol, please refer to Rodger et al. (2023).1.


Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Methylation/genetics , Sequence Analysis, DNA/methods , Neoplasms/genetics
6.
iScience ; 26(6): 106986, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378317

ABSTRACT

Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. The majority of CRC deaths are caused by tumor metastasis, even following treatment. There is strong evidence for epigenetic changes, such as DNA methylation, accompanying CRC metastasis and poorer patient survival. Earlier detection and a better understanding of molecular drivers for CRC metastasis are of critical clinical importance. Here, we identify a signature of advanced CRC metastasis by performing whole genome-scale DNA methylation and full transcriptome analyses of paired primary cancers and liver metastases from CRC patients. We observed striking methylation differences between primary and metastatic pairs. A subset of loci showed coordinated methylation-expression changes, suggesting these are potentially epigenetic drivers that control the expression of critical genes in the metastatic cascade. The identification of CRC epigenomic markers of metastasis has the potential to enable better outcome prediction and lead to the discovery of new therapeutic targets.

7.
PET Clin ; 18(2): 169-187, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36858744

ABSTRACT

Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.


Subject(s)
Epigenesis, Genetic , Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/genetics , Precision Medicine
8.
Methods Mol Biol ; 2588: 231-248, 2023.
Article in English | MEDLINE | ID: mdl-36418692

ABSTRACT

Circulating tumor cells (CTCs) are precursors of the metastatic cascade, which is responsible for 90% of all cancer-related deaths. CTCs arise from solid tumors and travel through the bloodstream and lymphatic system. Developments in the isolation and analysis of CTCs promise potential biomarker assays for detection and monitoring of cancer through a minimally invasive procedure. Despite this, the precise role of CTCs in metastasis remains poorly characterized, mainly due to the low density of CTCs (1-10 CTCs per 10 mL of blood) present in patient blood and the lack of robust methods for their isolation in a standard laboratory setting. CellSearch is currently the only FDA-approved CTC enrichment protocol, but limitations of this EpCAM-based method include cost, availability, and the use of a single surface marker for capture. To address these limitations, we have optimized an existing method, MetaCell, which exploits the differences in size of CTCs compared to other blood cells for CTC enrichment from blood. MetaCell contains a membrane with 8 µm pores, and blood is filtered through this kit by capillary action and CTCs, which are typically larger than the pores and remain on top of the membrane, while most leukocytes pass through the pores. The membrane along with these CTCs can be detached and transferred to 6-well plates for culturing or directly used for characterization. Here, we provide a detailed protocol for enrichment of CTCs using the filtration device MetaCell and a procedure for characterization of CTCs by immunohistochemical staining.


Subject(s)
Colorectal Neoplasms , Neoplastic Cells, Circulating , Humans , Cell Count , Leukocytes , Filtration
9.
Methods Mol Biol ; 2588: 249-278, 2023.
Article in English | MEDLINE | ID: mdl-36418693

ABSTRACT

Ribonucleic acids (RNAs) are fundamental molecules that control regulation and expression of the genome and therefore the function of a cell. Robust analysis and quantification of RNA transcripts hold critical importance in understanding cell function, altered phenotypes in different biological context, for understanding and targeting diseases. The development of RNA-sequencing (RNA-Seq) now provides opportunities to analyze the expression and function of RNA molecules at an unprecedented scale. However, the strategy for RNA-Seq experimental design and data analysis can substantially differ depending on the biological application. The design choice could also have significant impact for downstream results and interpretation of data. Here we describe key critical considerations required for RNA-Seq experimental design and also describe a step-by-step bioinformatics workflow detailing the different steps required for RNA-Seq data analysis. We believe this article will be a valuable guide for designing and analyzing RNA-Seq data to address a wide range of different biological questions.


Subject(s)
Data Analysis , Research Design , RNA-Seq , Exome Sequencing , RNA/genetics
10.
Cancers (Basel) ; 14(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36551655

ABSTRACT

Morphological, transcriptomic, and genomic defects are well-explored parameters of cancer biology. In more recent years, the impact of epigenetic influences, such as DNA methylation, is becoming more appreciated. Aberrant DNA methylation has been implicated in many types of cancers, influencing cell type, state, transcriptional regulation, and genomic stability to name a few. Traditionally, large populations of cells from the tissue of interest are coalesced for analysis, producing averaged methylome data. Considering the inherent heterogeneity of cancer, analysing populations of cells as a whole denies the ability to discover novel aberrant methylation patterns, identify subpopulations, and trace cell lineages. Due to recent advancements in technology, it is now possible to obtain methylome data from single cells. This has both research and clinical implications, ranging from the identification of biomarkers to improved diagnostic tools. As with all emerging technologies, distinct experimental, bioinformatic, and practical challenges present themselves. This review begins with exploring the potential impact of single-cell sequencing on understanding cancer biology and how it could eventually benefit a clinical setting. Following this, the techniques and experimental approaches which made this technology possible are explored. Finally, the present challenges currently associated with single-cell DNA methylation sequencing are described.

11.
Cancers (Basel) ; 14(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35884509

ABSTRACT

Circulating tumour cells (CTC) from solid tumours are a prerequisite for metastasis. Isolating CTCs and understanding their biology is essential for developing new clinical tests and precision oncology. Currently, CellSearch is the only FDA (U.S. Food and Drug Administration)-approved method for CTC enrichment but possesses several drawbacks owing to a reliance on the epithelial cell adhesion molecule (EpCAM) and a resource-intensive nature. Addressing these shortcomings, we optimised an existing size-based method, MetaCell, to enrich CTCs from blood of colorectal cancer (CRC) patients. We evaluated the ability of MetaCell to enrich CTCs by spiking blood with CRC cell lines and assessing the cell recovery rates and WBC depletion via immunostaining and gene expression. We then applied MetaCell to samples from 17 CRC patients and seven controls. Recovery rates were >85% in cell lines, with >95% depletion in WBCs. MetaCell yielded CTCs and CTC clusters in 52.9% and 23.5% of the patients, respectively, without false positives in control patients. CTCs and cluster detection did not correlate with histopathological parameters. Overall, we demonstrated that the MetaCell platform enriched CRC cells with high recovery rates and high purity. Our pilot study also demonstrated the ability of MetaCell to detect CTCs in CRC patients.

12.
Methods Mol Biol ; 2458: 3-21, 2022.
Article in English | MEDLINE | ID: mdl-35103959

ABSTRACT

Reduced representation bisulfite sequencing (RRBS) is a technique used for assessing genome-wide DNA methylation patterns in eukaryotes. RRBS was introduced to focus on CpG-rich regions that are likely to be of most interest for epigenetic regulation, such as gene promoters and enhancer sequence elements (Meissner et al., Nature 454:766-770, 2008). This "reduced representation" lowers the cost of sequencing and also gives increased depth of coverage, facilitating the resolution of more subtle changes in methylation levels. Here, we describe a modified RRBS sequencing (RRBS-seq) library preparation. Our protocol is optimized for generating single base-resolution libraries when low input DNA is a concern (10-100 ng). Our protocol includes steps to optimize library preparation, such as using deparaffinization solution (when formalin-fixed material is used), and a replacement of gel size-selection with sample purification beads. The described protocol can be accomplished in 3 days and has been successfully applied to tissues or cells from different organisms, including formalin-fixed tissues, to yield robust and reproducible results.


Subject(s)
DNA Methylation , Epigenesis, Genetic , CpG Islands , DNA/genetics , Sequence Analysis, DNA/methods , Sulfites
13.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948126

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that results in end-stage kidney disease, due to the uncontrolled bilateral growth of cysts throughout the kidneys. While it is known that a mutation within a PKD-causing gene is required for the development of ADPKD, the underlying mechanism(s) causing cystogenesis and progression of the disease are not well understood. Limited therapeutic options are currently available to slow the rate of cystic growth. Epigenetic modifications, including DNA methylation, are known to be altered in neoplasia, and several FDA-approved therapeutics target these disease-specific changes. As there are many similarities between ADPKD and neoplasia, we (and others) have postulated that ADPKD kidneys contain alterations to their epigenetic landscape that could be exploited for future therapeutic discovery. Here we summarise the current understanding of epigenetic changes that are associated with ADPKD, with a particular focus on the burgeoning field of ADPKD-specific alterations in DNA methylation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Polycystic Kidney, Autosomal Dominant , Animals , Disease Models, Animal , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism
14.
Viruses ; 13(10)2021 10 11.
Article in English | MEDLINE | ID: mdl-34696474

ABSTRACT

Papillomaviruses (PVs) are double-stranded DNA tumour viruses that can infect cutaneous and mucosal epidermis. Human papillomavirus (HPV) types have been linked to the causality of cutaneous squamous cell carcinoma (cSCC); however, HPV DNA is not always detected in the resultant tumour. DNA methylation is an epigenetic change that can contribute to carcinogenesis. We hypothesise that the DNA methylation pattern in cells is altered following PV infection. We tested if DNA methylation was altered by PV infection in the mouse papillomavirus (MmuPV1) model. Immunosuppressed mice were infected with MmuPV1 on cutaneous tail skin. Immunosuppression was withdrawn for some mice, causing lesions to spontaneously regress. Reduced representation bisulphite sequencing was carried out on DNA from the actively infected lesions, visibly regressed lesions, and mock-infected control mice. DNA methylation libraries were generated and analysed for differentially methylated regions throughout the genome. The presence of MmuPV1 sequences was also assessed. We identified 834 predominantly differentially hypermethylated fragments in regressed lesions, and no methylation differences in actively infected lesions. The promoter regions of genes associated with tumorigenicity, including the tumour suppressor protein DAPK1 and mismatch repair proteins MSH6 and PAPD7, were hypermethylated. Viral DNA was detected in active lesions and in some lesions that had regressed. This is the first description of the genome-wide DNA methylation landscape for active and regressed MmuPV1 lesions. We propose that the DNA hypermethylation in the regressed lesions that we report here may increase the susceptibility of cells to ultraviolet-induced cSCC.


Subject(s)
Epigenesis, Genetic/genetics , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Animals , Carcinoma, Squamous Cell/genetics , DNA Methylation/genetics , DNA, Viral/genetics , Epigenomics/methods , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Viral/genetics , Mice , Mice, Inbred BALB C , Papillomavirus Infections/virology , Promoter Regions, Genetic/genetics , Skin Neoplasms/genetics
15.
Cancers (Basel) ; 13(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34503064

ABSTRACT

Melanoma is the most aggressive type of skin cancer, with increasing incidence worldwide. Advances in targeted therapy and immunotherapy have improved the survival of melanoma patients experiencing recurrent disease, but unfortunately treatment resistance frequently reduces patient survival. Resistance to targeted therapy is associated with transcriptomic changes and has also been shown to be accompanied by increased expression of programmed death ligand 1 (PD-L1), a potent inhibitor of immune response. Intrinsic upregulation of PD-L1 is associated with genome-wide DNA hypomethylation and widespread alterations in gene expression in melanoma cell lines. However, an in-depth analysis of the transcriptomic landscape of melanoma cells with intrinsically upregulated PD-L1 expression is lacking. To determine the transcriptomic landscape of intrinsically upregulated PD-L1 expression in melanoma, we investigated transcriptomes in melanomas with constitutive versus inducible PD-L1 expression (referred to as PD-L1CON and PD-L1IND). RNA-Seq analysis was performed on seven PD-L1CON melanoma cell lines and ten melanoma cell lines with low inducible PD-L1IND expression. We observed that PD-L1CON melanoma cells had a reprogrammed transcriptome with a characteristic pattern of dedifferentiated gene expression, together with active interferon (IFN) and tumour necrosis factor (TNF) signalling pathways. Furthermore, we identified key transcription factors that were also differentially expressed in PD-L1CON versus PD-L1IND melanoma cell lines. Overall, our studies describe transcriptomic reprogramming of melanomas with PD-L1CON expression.

16.
Cancers (Basel) ; 13(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924927

ABSTRACT

DNA methylation is a heritable epigenetic mark that is fundamental to mammalian development. Aberrant DNA methylation is an epigenetic hallmark of cancer cells. Cell lines are a critical in vitro model and very widely used to unravel mechanisms of cancer cell biology. However, limited data are available to assess whether DNA methylation patterns in tissues are retained when cell lines are established. Here, we provide the first genome-scale sequencing-based methylation map of metastatic melanoma tumour tissues and their derivative cell lines. We show that DNA methylation profiles are globally conserved in vitro compared to the tumour tissue of origin. However, we identify sites that are consistently hypermethylated in cell lines compared to their tumour tissue of origin. The genes associated with these common differentially methylated regions are involved in cell metabolism, cell cycle and apoptosis and are also strongly enriched for the H3K27me3 histone mark and PRC2 complex-related genes. Our data indicate that although global methylation patterns are similar between tissues and cell lines, there are site-specific epigenomic differences that could potentially impact gene expression. Our work provides a valuable resource for identifying false positives due to cell culture and for better interpretation of cancer epigenetics studies in the future.

17.
Epigenomics ; 13(8): 577-598, 2021 04.
Article in English | MEDLINE | ID: mdl-33781093

ABSTRACT

Aims & objectives: The aim of this study was to investigate the role of DNA methylation in invasiveness in melanoma cells. Materials & methods: The authors carried out genome-wide transcriptome (RNA sequencing) and reduced representation bisulfite sequencing methylome profiling between noninvasive (n = 4) and invasive melanoma cell lines (n = 5). Results: The integration of differentially expressed genes and differentially methylated fragments (DMFs) identified 12 DMFs (two in AVPI1, one in HMG20B, two in BCL3, one in NTSR1, one in SYNJ2, one in ROBO2 and four in HORMAD2) that overlapped with either differentially expressed genes (eight DMFs and six genes) or cis-targets of lncRNAs (five DMFs associated with cis-targets and four differentially expressed lncRNAs). Conclusions: DNA methylation changes are associated with a number of transcriptional differences observed in noninvasive and invasive phenotypes in melanoma.


Subject(s)
DNA Methylation , Genome, Human , Melanoma/pathology , Neoplasm Invasiveness/genetics , RNA/genetics , Skin Neoplasms/pathology , Cell Line, Tumor , Humans , Phenotype , Reproducibility of Results
18.
Biochim Biophys Acta Rev Cancer ; 1875(2): 188514, 2021 04.
Article in English | MEDLINE | ID: mdl-33497709

ABSTRACT

Cancer metastasis is the main reason for the high mortality in patients, contributing to 90% of cancer-related deaths. Biomarkers for early detection and therapeutic monitoring are essential to improve cancer outcomes. Circulating tumour cells (CTCs) arise from solid tumours and are capable of metastatic dissemination via the bloodstream or lymphatic system. Thus, CTCs can potentially be developed as a minimally invasive biomarker for early detection and therapeutic monitoring. Despite its clinical potential, research on CTCs remains limited, and this is likely due to their low numbers, short half-life, and the lack of robust methods for their isolation. There is also a need for molecular characterisation of CTCs to identify tumour-specific features, such as epigenetic signatures of metastasis. This review provides an overview of the epigenetic landscape of CTCs. We discuss the role of epigenetic modifications in CTC dissemination,metastatic tumour formation and progression and highlight its clinical implications.


Subject(s)
Biomarkers, Tumor/genetics , Neoplasms/genetics , Neoplastic Cells, Circulating/chemistry , Circulating Tumor DNA/genetics , DNA Methylation , Disease Progression , Epigenesis, Genetic , Gene Regulatory Networks , Humans
19.
Pigment Cell Melanoma Res ; 34(1): 136-143, 2021 01.
Article in English | MEDLINE | ID: mdl-32567790

ABSTRACT

Melanoma is a disease associated with a very high mutation burden and thus the possibility of a diverse range of oncogenic mechanisms that allow it to evade therapeutic interventions and the immune system. Here, we describe the characterization of a panel of 102 cell lines from metastatic melanomas (the NZM lines), including using whole-exome and RNA sequencing to analyse genetic variants and gene expression changes in a subset of this panel. Lines possessing all major melanoma genotypes were identified, and hierarchical clustering of gene expression profiles revealed four broad subgroups of cell lines. Immunogenotyping identified a range of HLA haplotypes as well as expression of neoantigens and cancer-testis antigens in the lines. Together, these characteristics make the NZM panel a valuable resource for cell-based, immunological and xenograft studies to better understand the diversity of melanoma biology and the responses of melanoma to therapeutic interventions.


Subject(s)
Biomarkers, Tumor/genetics , Exome , Gene Expression Regulation, Neoplastic , Genomics/methods , Melanoma/genetics , Models, Biological , Mutation , Humans , Melanoma/secondary , Signal Transduction , Transcriptome , Tumor Cells, Cultured , Exome Sequencing
20.
Front Genet ; 11: 348, 2020.
Article in English | MEDLINE | ID: mdl-32351541

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a heritable disease characterized by bilateral renal enlargement due to the growth of cysts throughout the kidneys. Inheritance of a disease-causing mutation is required to develop ADPKD, which results in end-stage kidney disease and is associated with a high morbidity. The pathology underlying cyst formation is not well understood. To address this, we have previously shown the global methylome is altered in ADPKD tissue, suggesting a role of DNA methylation in disease-state renal tissue. As cysts are believed to arise independently, we hypothesize that DNA methylation changes vary accordingly. Here we further investigate the role of DNA methylation within independent cysts to characterize key intra-individual changes. We demonstrate that fragments within CpG islands and gene bodies harbor the greatest amount of variation across the ADPKD kidney, while intergenic fragments are comparatively stable. A proportion of variably methylated genes were also differentially methylated in ADPKD tissue. Our data provide evidence that individual molecular mechanisms are operating in the development of each cyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...