Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Evol ; 1(1): vev002, 2015.
Article in English | MEDLINE | ID: mdl-27774276

ABSTRACT

Endogenous viral sequences are essentially 'fossil records' that can sometimes reveal the genomic features of long extinct virus species. Although numerous known instances exist of single-stranded DNA (ssDNA) genomes becoming stably integrated within the genomes of bacteria and animals, there remain very few examples of such integration events in plants. The best studied of these events are those which yielded the geminivirus-related DNA elements found within the nuclear genomes of various Nicotiana species. Although other ssDNA virus-like sequences are included within the draft genomes of various plant species, it is not entirely certain that these are not contaminants. The Nicotiana geminivirus-related DNA elements therefore remain the only definitively proven instances of endogenous plant ssDNA virus sequences. Here, we characterize two new classes of endogenous plant virus sequence that are also apparently derived from ancient geminiviruses in the genus Begomovirus. These two endogenous geminivirus-like elements (EGV1 and EGV2) are present in the Dioscorea spp. of the Enantiophyllum clade. We used fluorescence in situ hybridization to confirm that the EGV1 sequences are integrated in the D. alata genome and showed that one or two ancestral EGV sequences likely became integrated more than 1.4 million years ago during or before the diversification of the Asian and African Enantiophyllum Dioscorea spp. Unexpectedly, we found evidence of natural selection actively favouring the maintenance of EGV-expressed replication-associated protein (Rep) amino acid sequences, which clearly indicates that functional EGV Rep proteins were probably expressed for prolonged periods following endogenization. Further, the detection in D. alata of EGV gene transcripts, small 21-24 nt RNAs that are apparently derived from these transcripts, and expressed Rep proteins, provides evidence that some EGV genes are possibly still functionally expressed in at least some of the Enantiophyllum clade species.

2.
J Virol ; 87(15): 8624-37, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23720724

ABSTRACT

Plant pararetroviruses integrate serendipitously into their host genomes. The banana genome harbors integrated copies of banana streak virus (BSV) named endogenous BSV (eBSV) that are able to release infectious pararetrovirus. In this investigation, we characterized integrants of three BSV species-Goldfinger (eBSGFV), Imove (eBSImV), and Obino l'Ewai (eBSOLV)-in the seedy Musa balbisiana Pisang klutuk wulung (PKW) by studying their molecular structure, genomic organization, genomic landscape, and infectious capacity. All eBSVs exhibit extensive viral genome duplications and rearrangements. eBSV segregation analysis on an F1 population of PKW combined with fluorescent in situ hybridization analysis showed that eBSImV, eBSOLV, and eBSGFV are each present at a single locus. eBSOLV and eBSGFV contain two distinct alleles, whereas eBSImV has two structurally identical alleles. Genotyping of both eBSV and viral particles expressed in the progeny demonstrated that only one allele for each species is infectious. The infectious allele of eBSImV could not be identified since the two alleles are identical. Finally, we demonstrate that eBSGFV and eBSOLV are located on chromosome 1 and eBSImV is located on chromosome 2 of the reference Musa genome published recently. The structure and evolution of eBSVs suggest sequential integration into the plant genome, and haplotype divergence analysis confirms that the three loci display differential evolution. Based on our data, we propose a model for BSV integration and eBSV evolution in the Musa balbisiana genome. The mutual benefits of this unique host-pathogen association are also discussed.


Subject(s)
Genome, Plant , Musa/virology , Plant Viruses/genetics , Gene Dosage , Gene Order , Genes, Viral , Genotype , In Situ Hybridization, Fluorescence , Recombination, Genetic
3.
Ann Bot ; 110(8): 1593-606, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23087127

ABSTRACT

BACKGROUND AND AIMS: Edible bananas originated mainly from two wild species, Musa acuminata Colla (AA) and Musa balbisiana Colla (BB), and triploid cultivars with an AAA, AAB or ABB genome are the most widely used. In the present study, chromosome pairing affinities are investigated in a sterile AB Indian variety and in its fertile colchicine-induced allotetraploid (AABB) derivative to determine the inheritance pattern of the tetraploid genotype. The potential implications of interspecific recombination and chromosomal composition of diploid gametes for Musa improvement are presented. METHODS: The pairing of different chromosome sets at diploid and tetraploid levels was investigated through a combination of conventional cytogenetic and genomic in-situ hybridization (GISH) analyses of meiotic chromosomes, leading to a likelihood model of the pairing behaviour. GISH analysis of mitotic chromosomes was also conducted to reveal the chromosome constitution of hybrids derived from crosses involving the allotetraploid genotype. KEY RESULTS: Analysis of chromosome associations at both ploidy levels suggested that the newly formed allotetraploid behaves as a 'segmental allotetraploid' with three chromosome sets in a tetrasomic pattern, three sets in a likely disomic pattern and the five remaining sets in an intermediate pattern. Balanced and unbalanced diploid gametes were detected in progenies, with the chromosome constitution appearing to be more homogenous in pollen than in ovules. CONCLUSIONS: Colchicine-induced allotetraploids in Musa provide access to the genetic background of natural AB varieties. The segmental inheritance pattern exhibited by the AABB allotetraploid genotype implies chromosome exchanges between M. acuminata and M. balbisiana species and opens new horizons for reciprocal transfer of valuable alleles.


Subject(s)
Chromosome Pairing/genetics , Chromosomes, Plant/genetics , Genome, Plant/genetics , Inheritance Patterns/genetics , Musa/genetics , Tetraploidy , Cytogenetics , DNA, Plant/genetics , Genotype , Germ Cells, Plant , In Situ Hybridization, Fluorescence , Likelihood Functions , Meiosis/genetics , Musa/classification , Musa/cytology , Nucleic Acid Hybridization
4.
Nature ; 488(7410): 213-7, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22801500

ABSTRACT

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Musa/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , Gene Duplication/genetics , Genes, Plant/genetics , Genotype , Haploidy , Molecular Sequence Data , Musa/classification , Phylogeny
5.
BMC Genomics ; 13: 222, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22672252

ABSTRACT

BACKGROUND: The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. RESULTS: We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR(3500) and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. CONCLUSION: The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia and the other model fishes. These maps represent a valuable resource for organizing the forthcoming genome sequence of Nile tilapia, and provide a foundation for evolutionary studies of East African cichlid fishes.


Subject(s)
Cichlids/genetics , Genome , Animals , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Comparative Genomic Hybridization , Expressed Sequence Tags , Genetic Linkage , Genotype , Microsatellite Repeats , Polymorphism, Single Nucleotide , Radiation Hybrid Mapping
6.
Mol Plant Microbe Interact ; 25(7): 851-61, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22475377

ABSTRACT

Research on the nitrogen-fixing symbiosis has been focused, thus far, on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some Aeschynomene spp. are nodulated by photosynthetic Bradyrhizobium spp. that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium-legume symbiosis. To decipher the mechanisms of this Nod-independent process, we propose Aeschynomene evenia as a model legume because it presents all the characteristics required for genetic and molecular analysis. It is a short-perennial and autogamous species, with a diploid and relatively small genome (2n=20; 460 Mb/1C). A. evenia 'IRFL6945' is nodulated by the well-characterized photosynthetic Bradyrhizobium sp. strain ORS278 and is efficiently transformed by Agrobacterium rhizogenes. Aeschynomene evenia is genetically homozygous but polymorphic accessions were found. A manual hybridization procedure has been set up, allowing directed crosses. Therefore, it should be relatively straightforward to unravel the molecular determinants of the Nod-independent process in A. evenia. This should shed new light on the evolution of rhizobium-legume symbiosis and could have important agronomic implications.


Subject(s)
Bradyrhizobium/genetics , Fabaceae/genetics , Genome, Plant/genetics , Symbiosis/genetics , Agrobacterium , Bradyrhizobium/physiology , DNA, Plant/analysis , DNA, Plant/genetics , Fabaceae/anatomy & histology , Fabaceae/microbiology , Fabaceae/physiology , Flowers/anatomy & histology , Genetic Markers , Nitrogen Fixation/genetics , Phenotype , Phylogeny , Plant Leaves/anatomy & histology , Plant Root Nodulation , Plant Roots/anatomy & histology , Plant Roots/microbiology , Plant Roots/physiology , Plant Stems/anatomy & histology , Pollination , Polymorphism, Genetic , Seedlings/genetics , Transformation, Genetic
7.
Ann Bot ; 108(5): 975-81, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21835815

ABSTRACT

BACKGROUND AND AIMS: Most cooking banana and several desert bananas are interspecific triploid hybrids between Musa acuminata (A genome) and Musa balbisiana (B genome). In addition, M. balbisiana has agronomical characteristics such as resistance to biotic and abiotic stresses that could be useful to improve monospecific acuminata cultivars. To develop efficient breeding strategies for improving Musa cultivars, it is therefore important to understand the possibility of chromosome exchange between these two species. METHODS: A protocol was developed to prepare chromosome at meiosis metaphase I suitable for genomic in situ hybridization. A series of technical challenges were encountered, the main ones being the hardness of the cell wall and the density of the microsporocyte's cytoplasm, which hampers accessibility of the probes to the chromosomes. Key parameters in solving these problems were addition of macerozyme in the enzyme mix, the duration of digestion and temperature during the spreading phase. RESULTS AND CONCLUSIONS: This method was applied to analyse chromosome pairing in metaphase from triploid interspecific cultivars, and it was clearly demonstrated that interspecific recombinations between M. acuminata and M. balbisiana chromosomes do occur and may be frequent in triploid hybrids. These results provide new insight into Musa cultivar evolution and have important implications for breeding.


Subject(s)
Chromosome Pairing , Chromosomes, Plant , Musa/genetics , DNA, Plant/genetics , Gene Transfer, Horizontal , Hybridization, Genetic , In Situ Hybridization , Musa/cytology , Polyploidy
8.
Am J Bot ; 98(1): e13-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21613076

ABSTRACT

PREMISE OF THE STUDY: In this study, we developed a nuclear DNA extraction protocol for Next Generation Sequencers (NGS). METHODS AND RESULTS: We applied this extraction method to grapevines and coffee trees, which are known to contain many secondary metabolites. The nuclear DNA obtained was sequenced by the 454/GS-FLX method. We obtained excellent results, with less than 4% cytoplasmic DNA, in a similar way to a BAC (Bacterial Artificial Chromosome)-building protocol. We also compared our protocol with a classic DNA extraction using specific cytoplasmic DNA amplification. Results showed a lower cytoplasmic DNA contamination with the new protocol. CONCLUSIONS: The method presented here is fast and economical. The DNA obtained is of high quality, with a low level of cytoplasmic DNA contamination, and very efficient for the construction of sequencing libraries.


Subject(s)
Cell Nucleus/genetics , Coffee/genetics , DNA, Plant/chemistry , Vitis/genetics , Base Sequence , Cell Nucleus/chemistry , Coffee/chemistry , Cytoplasm/chemistry , Cytoplasm/genetics , DNA, Plant/genetics , DNA, Plant/isolation & purification , Gene Library , Genome, Plant , Molecular Sequence Data , Nucleic Acid Amplification Techniques , Sequence Analysis, DNA/methods , Vitis/chemistry
9.
BMC Plant Biol ; 10: 149, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20637079

ABSTRACT

BACKGROUND: Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). RESULTS: Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. CONCLUSIONS: A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.


Subject(s)
Genes, Plant/genetics , Genetic Variation , Musa/genetics , Phylogeny , Alleles , Chromosome Mapping , Conserved Sequence/genetics , Gene Expression Regulation, Plant , Gene Order , Haplotypes/genetics , Microsatellite Repeats , Musa/classification , Recombination, Genetic , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...