Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 153: 106479, 2024 May.
Article in English | MEDLINE | ID: mdl-38492502

ABSTRACT

In this paper, we introduce the design and manufacturing process of a transtibial orthopedic implant. We used medical-grade polyurethane polymer resin to fabricate a 3D porous architected implant with tunable isotropy, employing a high-speed printing method known as Continuous Liquid Interface Production (CLIP). Our objective is to enhance the weight-bearing capabilities of the bone structures in the residual limb, thereby circumventing the traditional reliance on a natural bridge. To achieve a custom-made design, we acquire the topology and morphology of the residual limb as well as the bone structure of the tibia and fibula, utilizing computed tomography (CT) and high-resolution 3D scanning. We employed a dynamic topological optimization method, informed by gait cycle data, to effectively reduce the mass of the implant. This approach, which differs from conventional static methods, enables the quantification of variations in applied forces over time. Using the Euler-Lagrange energy approach, we propose the equations of motion for a homologous multibody model with three degrees of freedom. The versatility of the Solid Isotropic Material with Penalization (SIMP) method facilitates the integration of homogenization methods for microscale porous architectures into the optimized domain. The design of these porous architectures is based on a bias-driven tuning symmetry isotropy of a Triply Periodic Minimal Surface (Schwarz Primitive surface). The internal porosity of the structure significantly reduces weight without compromising the isotropic behavior of the implant.


Subject(s)
Polymers , Prostheses and Implants , Porosity , Bone and Bones , Printing, Three-Dimensional
2.
Polymers (Basel) ; 16(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276692

ABSTRACT

The dip coating process is one of the recognized techniques used to generate polymeric coatings on stents in an easy and low-cost way. However, there is a lack of information about the influence of the process parameters of this technique on complex geometries such as stents. This paper studies the dip coating process parameters used to provide a uniform coating of PLA with a 4-10 µm thickness. A stainless-steel tube (AISI 316L) was laser-cut, electropolished, and dip-coated in a polylactic acid (PLA) solution whilst changing the process parameters. The samples were characterized to examine the coating's uniformity, thickness, surface roughness, weight, and chemical composition. FTIR and Raman investigations indicated the presence of PLA on the stent's surface, the chemical stability of PLA during the coating process, and the absence of residual chloroform in the coatings. Additionally, the water contact angle was measured to determine the hydrophilicity of the coating. Our results indicate that, when using entry and withdrawal speeds of 500 mm min-1 and a 15 s immersion time, a uniform coating thickness was achieved throughout the tube and in the stent with an average thickness of 7.8 µm.

3.
Sensors (Basel) ; 23(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139748

ABSTRACT

Strategies to stir and mix reagents in microfluid devices have evolved concomitantly with advancements in manufacturing techniques and sensing. While there is a large array of reported designs to combine and homogenize liquids, most of the characterization has been focused on setups with two inlets and one outlet. While this configuration is helpful to directly evaluate the effects of features and parameters on the mixing degree, it does not portray the conditions for experiments that involve more than two substances required to be subsequently combined. In this work, we present a mixing characterization methodology based on particle tracking as an alternative to the most common approach to measure homogeneity using the standard deviation of pixel intensities from a grayscale image. The proposed algorithm is implemented on a free and open-source mobile application (MIQUOD) for Android devices, numerically tested on COMSOL Multiphysics, and experimentally tested on a bidimensional split and recombine micromixer and a three-dimensional micromixer with sinusoidal grooves for different Reynolds numbers and geometrical features for samples with fluids seeded with red, blue, and green microparticles. The application uses concentration field data and particle track data to evaluate up to eleven performance metrics. Furthermore, with the insights from the experimental and numerical data, a mixing index for particles (mp) is proposed to characterize mixing performance for scenarios with multiple input reagents.

4.
Materials (Basel) ; 16(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36770032

ABSTRACT

The growth of additive manufacturing processes has enabled the production of complex and smart structures. These fabrication techniques have led research efforts to focus on the application of cellular materials, which are known for their thermal and mechanical benefits. Herein, we studied the mechanical behavior of stainless-steel (AISI 316L) lattice structures both experimentally and computationally. The lattice architectures were body-centered cubic, hexagonal vertex centroid, and tetrahedron in two cell sizes and at two different rotation angles. A preliminary computational study assessed the deformation behavior of porous cylindrical samples under compression. After the simulation results, selected samples were manufactured via laser powder bed fusion. The results showed the effects of the pore architecture, unit cell size, and orientation on the reduction in the mechanical properties. The relative densities between 23% and 69% showed a decrease in the bulk material stiffness up to 93%. Furthermore, the different rotation angles resulted in a similar porosity level but different stiffnesses. The simulation analysis and experimental results indicate that the variation in the strut position with respect to the force affected the deformation mechanism. The tetrahedron unit cell showed the smallest variation in the elastic modulus and off-axis displacements due to the cell orientation. This study collected computational and experimental data for tuning the mechanical properties of lattice structures by changing the geometry, size, and orientation of the unit cell.

5.
Polymers (Basel) ; 14(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36501684

ABSTRACT

Human skin is characterized by rough, elastic, and uneven features that are difficult to recreate using conventional manufacturing technologies and rigid materials. The use of soft materials is a promising alternative to produce devices that mimic the tactile capabilities of biological tissues. Although previous studies have revealed the potential of fillers to modify the properties of composite materials, there is still a gap in modeling the conductivity and mechanical properties of these types of materials. While traditional Finite Element approximations can be used, these methodologies tend to be highly demanding of time and processing power. Instead of this approach, a data-driven learning-based approximation strategy can be used to generate prediction models via neural networks. This paper explores the fabrication of flexible nanocomposites using polydimethylsiloxane (PDMS) with different single-walled carbon nanotubes (SWCNTs) loadings (0.5, 1, and 1.5 wt.%). Simple Recurrent Neural Networks (SRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU) models were formulated, trained, and tested to obtain the predictive sequence data of out-of-plane quasistatic mechanical tests. Finally, the model learned is applied to a dynamic system using the Kelvin-Voight model and the phenomenon known as the bouncing ball. The best predictive results were achieved using a nonlinear activation function in the SRNN model implementing two units and 4000 epochs. These results suggest the feasibility of a hybrid approach of analogy-based learning and data-driven learning for the design and computational analysis of soft and stretchable nanocomposite materials.

6.
Polymers (Basel) ; 14(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406279

ABSTRACT

In this article, a recent formulation for real-time simulation is developed combining the strain energy density of the Spring Mass Model (SMM) with the equivalent representation of the Strain Energy Density Function (SEDF). The resulting Equivalent Energy Spring Model (EESM) is expected to provide information in real-time about the mechanical response of soft tissue when subjected to uniaxial deformations. The proposed model represents a variation of the SMM and can be used to predict the mechanical behavior of biological tissues not only during loading but also during unloading deformation states. To assess the accuracy achieved by the EESM, experimental data was collected from liver porcine samples via uniaxial loading and unloading tensile tests. Validation of the model through numerical predictions achieved a refresh rate of 31 fps (31.49 ms of computation time for each frame), achieving a coefficient of determination R2 from 93.23% to 99.94% when compared to experimental data. The proposed hybrid formulation to characterize soft tissue mechanical behavior is fast enough for real-time simulation and captures the soft material nonlinear virgin and stress-softened effects with high accuracy.

7.
Micromachines (Basel) ; 14(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36677116

ABSTRACT

Light-based bioprinter manufacturing technology is still prohibitively expensive for organizations that rely on accessing three-dimensional biological constructs for research and tissue engineering endeavors. Currently, most of the bioprinting systems are based on commercial-grade-based systems or modified DIY (do it yourself) extrusion apparatuses. However, to date, few examples of the adoption of low-cost equipment have been found for light-based bioprinters. The requirement of large volumes of bioinks, their associated cost, and the lack of information regarding the parameter selection have undermined the adoption of this technology. This paper showcases the retrofitting and assessing of a low-cost Light-Based 3D printing system for tissue engineering. To evaluate the potential of a proposed design, a manufacturability test for different features, machine parameters, and Gelatin Methacryloyl (GelMA) concentrations for 7.5% and 10% was performed. Furthermore, a case study of a previously seeded hydrogel with C2C12 cells was successfully implemented as a proof of concept. On the manufacturability test, deviational errors were found between 0.7% to 13.3% for layer exposure times of 15 and 20 s. Live/Dead and Actin-Dapi fluorescence assays after 5 days of culture showed promising results in the cell viability, elongation, and alignment of 3D bioprinted structures. The retrofitting of low-cost equipment has the potential to enable researchers to create high-resolution structures and three-dimensional in vitro models.

8.
Materials (Basel) ; 15(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009246

ABSTRACT

A novel manufacturing approach was used to fabricate metallic scaffolds. A calibration of the laser cutting process was performed using the kerf width compensation in the calculations of the tool trajectory. Welding defects were studied through X-ray microtomography. Penetration depth and width resulted in relative errors of 9.4%, 1.0%, respectively. Microhardness was also measured, and the microstructure was studied in the base material. The microhardness values obtained were 400 HV, 237 HV, and 215 HV for the base material, HAZ, and fusion zone, respectively. No significant difference was found between the microhardness measurement along with different height positions of the scaffold. The scaffolds' dimensions and porosity were measured, their internal architecture was observed with micro-computed tomography. The results indicated that geometries with dimensions under 500 µm with different shapes resulted in relative errors of ~2.7%. The fabricated scaffolds presented an average compressive modulus ~13.15 GPa, which is close to cortical bone properties. The proposed methodology showed a promising future in bone tissue engineering applications.

9.
Materials (Basel) ; 15(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35009402

ABSTRACT

The strategy of embedding conductive materials on polymeric matrices has produced functional and wearable artificial electronic skin prototypes capable of transduction signals, such as pressure, force, humidity, or temperature. However, these prototypes are expensive and cover small areas. This study proposes a more affordable manufacturing strategy for manufacturing conductive layers with 6 × 6 matrix micropatterns of RTV-2 silicone rubber and Single-Walled Carbon Nanotubes (SWCNT). A novel mold with two cavities and two different micropatterns was designed and tested as a proof-of-concept using Low-Force Stereolithography-based additive manufacturing (AM). The effect SWCNT concentrations (3 wt.%, 4 wt.%, and 5 wt.%) on the mechanical properties were characterized by quasi-static axial deformation tests, which allowed them to stretch up to ~160%. The elastomeric soft material's hysteresis energy (Mullin's effect) was fitted using the Ogden-Roxburgh model and the Nelder-Mead algorithm. The assessment showed that the resulting multilayer material exhibits high flexibility and high conductivity (surface resistivity ~7.97 × 104 Ω/sq) and that robust soft tooling can be used for other devices.

10.
Sensors (Basel) ; 20(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291631

ABSTRACT

Laparoscopic surgery demands highly skilled surgeons. Traditionally, a surgeon's knowledge is acquired by operating under a mentor-trainee method. In recent years, laparoscopic simulators have gained ground as tools in skill acquisition. Despite the wide range of laparoscopic simulators available, few provide objective feedback to the trainee. Those systems with quantitative feedback tend to be high-end solutions with limited availability due to cost. A modular smart trainer was developed, combining tool-tracking and force-using employing commercially available sensors. Additionally, a force training system based on polydimethylsiloxane (PDMS) phantoms for sample stiffness differentiation is presented. This prototype was tested with 39 subjects, between novices (13), intermediates (13), and experts (13), evaluating execution differences among groups in training exercises. The estimated cost is USD $200 (components only), not including laparoscopic instruments. The motion system was tested for noise reduction and position validation with a mean error of 0.94 mm. Grasping force approximation showed a correlation of 0.9975. Furthermore, differences in phantoms stiffness effectively reflected user manipulation. Subject groups showed significant differences in execution time, accumulated distance, and mean and maximum applied grasping force. Accurate information was obtained regarding motion and force. The developed force-sensing tool can easily be transferred to a clinical setting. Further work will consist on a validation of the simulator on a wider range of tasks and a larger sample of volunteers.


Subject(s)
Clinical Competence , Laparoscopy , Computer Simulation , Feedback , Humans , Mechanical Phenomena , User-Computer Interface
12.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33213110

ABSTRACT

The interplay between a prosthetic and tissue represents an important factor for the fixation of orthopedic implants. Laser texturing tests and electropolishing were performed on two materials used in the fabrication of medical devices, i.e., CoCr and Ti6Al4V-ELI alloys. The material surface was textured with a diode-pumped solid state (DPSS) laser and its effect on the surface quality and material modification, under different combinations of laser power and marking speed, were investigated. Our results indicate that an increment of energy per unit length causes an incremental trend in surface roughness parameters. Additionally, phase transformation on the surface of both alloys was achieved. Chemical analysis by energy dispersive X-ray spectrometer (EDX) shows the formation of (Co(Cr,Mo)) phase and the M23C6 precipitate on the CoCr surface; while quantitative analysis of the X-ray diffractometer (XRD) results demonstrates the oxidation of the Ti alloy with the formation of Ti2O and Ti6O from the reduction of the α-Ti phase. The behaviors were both related with an increase of the energy per unit length. Control of the final surface roughness was achieved by an electropolishing post-treatment, minimizing the as-treated values. After polishing, a reduction of surface roughness parameters was obtained in a range between 3% and 44%, while no changes in chemical composition or present phases were observed.

13.
Micromachines (Basel) ; 11(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138263

ABSTRACT

In this paper, we characterized an assortment of photopolymers and stereolithography processes to produce 3D-printed molds and polydimethylsiloxane (PDMS) castings of micromixing devices. Once materials and processes were screened, the validation of the soft tooling approach in microfluidic devices was carried out through a case study. An asymmetric split-and-recombine device with different cross-sections was manufactured and tested under different regime conditions (10 < Re < 70). Mixing performances between 3% and 96% were obtained depending on the flow regime and the pitch-to-depth ratio. The study shows that 3D-printed soft tooling can provide other benefits such as multiple cross-sections and other potential layouts on a single mold.

14.
Materials (Basel) ; 13(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630123

ABSTRACT

The use of hybrid manufacturing to produce bimodal scaffolds has represented a great advancement in tissue engineering. These scaffolds provide a favorable environment in which cells can adhere and produce new tissue. However, there are several areas of opportunity to manufacture structures that provide enough strength and rigidity, while also improving chemical integrity. As an advancement in the manufacturing process of scaffolds, a cooling system was introduced in a fused deposition modeling (FDM) machine to vary the temperature on the printing bed. Two groups of polylactic acid (PLA) scaffolds were then printed at two different bed temperatures. The rate of degradation was evaluated during eight weeks in Hank's Balanced Salt Solution (HBSS) in a controlled environment (37 °C-120 rpm) to assess crystallinity. Results showed the influence of the cooling system on the degradation rate of printed scaffolds after the immersion period. This phenomenon was attributable to the mechanism associated with alkaline hydrolysis, where a higher degree of crystallinity obtained in one group induced greater rates of mass loss. The overall crystallinity was observed, through differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and Fourier transformed infrared spectroscopy (FTIR) analysis, to increase with time because of the erosion of some amorphous parts after immersion.

15.
Biofabrication ; 12(3): 035023, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32224513

ABSTRACT

This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (>1.0 m min-1). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼102 cm2 cm-3) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.


Subject(s)
Bioprinting , Nanostructures/chemistry , Alginates/chemistry , Bacteria/cytology , Graphite/chemistry , Reproducibility of Results , Tissue Engineering
16.
J Surg Res ; 245: 403-409, 2020 01.
Article in English | MEDLINE | ID: mdl-31430716

ABSTRACT

BACKGROUND: Despite preventive methods and careful surgical technique, surgical site infection and incisional hernias are of main concern after the closure of surgical incisions and keep haunting abdominal wall wound healing. The aim of this study is to find how surgical expertise level modifies biomechanical properties of sutures commonly used in abdominal wall fascial closure (polypropylene, polyglactin 910, polydioxanone). MATERIALS AND METHODS: Surgery residents with different experience levels performed abdominal wall fascial closure in swine models with the previously mentioned suture materials. A standardized technique was used. Sutures were removed, and a tensile stress test was performed on the removed sutures. A total of 81 abdominal fascial closures were achieved. Time, extension, maximum tensile force (Ftmax), and maximum stress were measured and analyzed. RESULTS: The results of the polydioxanone stress test present a trend in three variables: extension, tensile force, and stress. The trend shows higher medians in the expert group and lower medians in the novice group. While using polypropylene sutures, medians in the expert group are the highest; however, a trend is not observed. Polyglactin 910 sutures have nonspecific behavior among the different experience groups and variables. Polypropylene is the material with the lowest Ftmax tested and fails at 42.64 (IQR 40.98-44.89) N. Regarding the elastic properties of the material, polyglactin demonstrates the least extension of all sutures tested, with a 14 (IQR 13.33-14.83) mm extension. This study demonstrates that polydioxanone has a superior Ftmax compared with polypropylene and has a superior extension at failure properties compared with polyglactin, confirming that polydioxanone could be the suture of choice used for abdominal wall fascial closure. CONCLUSIONS: Study results do not show statistically significant differences regarding the impact of the experience level of different general surgery residents in the biomechanical properties of sutures used in abdominal wall fascial closure.


Subject(s)
Abdominal Wall/surgery , Clinical Competence , General Surgery/education , Suture Techniques , Sutures , Animals , Biomechanical Phenomena , Swine
17.
Acta Biomater ; 97: 154-161, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31352105

ABSTRACT

The role of 3D printing in the biomedical field is growing. In this context, photocrosslink-based 3D printing procedures for resorbable polymers stand out. Despite much work, more studies are needed on photocuring stereochemistry, new resin additives, new polymers and resin components. As part of these studies it is vital to present the logic used to optimize the amount of each resin constituent and how that effects printing process parameters. The present manuscript aims to analyze the effects of poly(propylene fumarate) (PPF) resin components and their effect on 3D printing process parameters. Diethyl fumarate (DEF), bisacylphosphine oxide (BAPO), Irgacure 784, 2-hydroxy-4-methoxybenzophenone (HMB) and, for the first time, in biomedical 3D printing, ethyl acetate (EA), were the resin components under investigation in this study. Regarding printing process parameters, Exposure Time, Voxel Depth, and Overcuring Depth were the parameters studied. Taguchi Design of Experiments was used to search for the effect of varying these resin constituent concentrations and 3D printing parameters on the curing behavior of 3D printable PPF resins. Our results indicate that resins with higher polymer cross-link density, especially those with a higher content of PPF, are able to be printed at higher voxel depth and with greater success (i.e., high yield). High voxel depth, as long as it does not sacrifice required resolution, is desirable as it speeds printing. Nevertheless, the overall process is governed by the correct setup of the voxel depth in relation to overcuring depth. In regards to resin biocompatibility, it was observed that EA is more effective than DEF, the material we had previously relied on. Our preliminary in vitro cytotoxicity tests indicate that the use of EA does not reduce scaffold biocompatibility as measured by standard cytotoxicity testing (i.e., ISO 10993-5). We demonstrate a workpath for resin constituent concentration optimization through thin film tests and photocrosslinkable process optimization. STATEMENT OF SIGNIFICANCE: We report here the results of a study of photo-crosslinkable polymer resin component optimization for the 3D printing of resorbable poly(propylene fumarate) (PPF) scaffolds. Resin additives are initially optimized for PPF thin film printing. Once those parameters have been optimized the 3D printing process parameters for PPF objects with complex, porous shapes can be optimized. The design of experiments to optimize both polymer thin films and complex porous resorbable polymer scaffolds is important as a guess and check, or in some cases a systematic method, are very likely to be too time consuming to accomplish. Previously unstudied resin components and process parameters are reported.


Subject(s)
Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Fumarates/chemistry , Photochemical Processes , Polypropylenes/chemistry , Printing, Three-Dimensional
18.
Materials (Basel) ; 12(13)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269641

ABSTRACT

Currently, electrospinning membranes for vascular graft applications has been limited, due to random fiber alignment, to use in mandrel-spun, straight tubular shapes. However, straight, circular tubes with constant diameters are rare in the body. This study presents a method to fabricate curved, non-circular, and bifurcated vascular grafts based on electrospinning. In order to create a system capable of electrospinning membranes to meet specific patient needs, this study focused on characterizing the influence of fiber source, electrical field collector position (inside vs. outside the mandrel), and the motion scheme of the mandrel (rotation vs. rotation and tilting) on the vascular graft membrane morphology and mechanical properties. Given the extensive use of poly(ε-caprolactone) (PCL) in tubular vascular graft membranes, the same material was used here to facilitate a comparison. Our results showed that the best morphology was obtained using orthogonal sources and collector positioning, and a well-timed rotation and tilting motion scheme. In terms of mechanical properties, our bifurcated vascular graft membranes showed burst pressure comparable to that of tubular vascular graft membranes previously reported, with values up to 5126 mmHg. However, the suture retention strength shown by the bifurcated vascular graft membranes was less than desired, not clinically viable values. Process improvements are being contemplated to introduce these devices into the clinical range.

19.
Materials (Basel) ; 12(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893894

ABSTRACT

In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37⁻21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79⁻16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.

20.
Materials (Basel) ; 12(6)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889796

ABSTRACT

The increase in accessibility of fused filament fabrication (FFF) machines has inspired the scientific community to work towards the understanding of the structural performance of components fabricated with this technology. Numerous attempts to characterize and to estimate the mechanical properties of structures fabricated with FFF have been reported in the literature. Experimental characterization of printed components has been reported extensively. However, few attempts have been made to predict properties of printed structures with computational models, and a lot less work with analytical approximations. As a result, a thorough review of reported experimental characterization and predictive models is presented with the aim of summarizing applicability and limitations of those approaches. Finally, recommendations on practices for characterizing printed materials are given and areas that deserve further research are proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...