Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Cells ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607017

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) describe compounds that bind to and induce degradation of a target by simultaneously binding to a ubiquitin ligase. More generally referred to as bifunctional degraders, PROTACs have led the way in the field of targeted protein degradation (TPD), with several compounds currently undergoing clinical testing. Alongside bifunctional degraders, single-moiety compounds, or molecular glue degraders (MGDs), are increasingly being considered as a viable approach for development of therapeutics, driven by advances in rational discovery approaches. This review focuses on drug discovery with respect to bifunctional and molecular glue degraders within the ubiquitin proteasome system, including analysis of mechanistic concepts and discovery approaches, with an overview of current clinical and pre-clinical degrader status in oncology, neurodegenerative and inflammatory disease.


Subject(s)
Drug Discovery , Medical Oncology , Cytoplasm , Proteasome Endopeptidase Complex , Proteolysis , Ubiquitin
2.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507413

ABSTRACT

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Disease Models, Animal , ELAV-Like Protein 1/metabolism , Liver Neoplasms/pathology , RNA/metabolism , Sumoylation
3.
Cell Mol Biol Lett ; 29(1): 15, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229033

ABSTRACT

BACKGROUND: The eukaryotic translation initiation protein eIF5A is a highly conserved and essential factor that plays a critical role in different physiological and pathological processes including stress response and cancer. Different proteomic studies suggest that eIF5A may be a small ubiquitin-like modifier (SUMO) substrate, but whether eIF5A is indeed SUMOylated and how relevant is this modification for eIF5A activities are still unknown. METHODS: SUMOylation was evaluated using in vitro SUMOylation assays, Histidine-tagged proteins purification from His6-SUMO2 transfected cells, and isolation of endogenously SUMOylated proteins using SUMO-binding entities (SUBES). Mutants were engineered by site-directed mutagenesis. Protein stability was measured by a cycloheximide chase assay. Protein localization was determined using immunofluorescence and cellular fractionation assays. The ability of eIF5A1 constructs to complement the growth of Saccharomyces cerevisiae strains harboring thermosensitive mutants of a yeast EIF5A homolog gene (HYP2) was analyzed. The polysome profile and the formation of stress granules in cells expressing Pab1-GFP (a stress granule marker) by immunofluorescence were determined in yeast cells subjected to heat shock. Cell growth and migration of pancreatic ductal adenocarcinoma PANC-1 cells overexpressing different eIF5A1 constructs were evaluated using crystal violet staining and transwell inserts, respectively. Statistical analysis was performed with GraphPad Software, using unpaired Student's t-test, or one-way or two-way analysis of variance (ANOVA). RESULTS: We found that eIF5A is modified by SUMO2 in vitro, in transfected cells and under endogenous conditions, revealing its physiological relevance. We identified several SUMO sites in eIF5A and found that SUMOylation modulates both the stability and the localization of eIF5A in mammalian cells. Interestingly, the SUMOylation of eIF5A responds to specific stresses, indicating that it is a regulated process. SUMOylation of eIF5A is conserved in yeast, the eIF5A SUMOylation mutants are unable to completely suppress the defects of HYP2 mutants, and SUMOylation of eIF5A is important for both stress granules formation and disassembly of polysomes induced by heat-shock. Moreover, mutation of the SUMOylation sites in eIF5A abolishes its promigratory and proproliferative activities in PANC-1 cells. CONCLUSIONS: SUMO2 conjugation to eIF5A is a stress-induced response implicated in the adaptation of yeast cells to heat-shock stress and required to promote the growth and migration of pancreatic ductal adenocarcinoma cells.


Subject(s)
Adenocarcinoma , Saccharomyces cerevisiae , Animals , Humans , Mammals , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin/metabolism
4.
Elife ; 122023 07 03.
Article in English | MEDLINE | ID: mdl-37395461

ABSTRACT

The ubiquitin-like proteins Atg8/LC3/GABARAP are required for multiple steps of autophagy, such as initiation, cargo recognition and engulfment, vesicle closure and degradation. Most of LC3/GABARAP functions are considered dependent on their post-translational modifications and their association with the autophagosome membrane through a conjugation to a lipid, the phosphatidyl-ethanolamine. Contrarily to mammals, C. elegans possesses single homologs of LC3 and GABARAP families, named LGG-2 and LGG-1. Using site-directed mutagenesis, we inhibited the conjugation of LGG-1 to the autophagosome membrane and generated mutants that express only cytosolic forms, either the precursor or the cleaved protein. LGG-1 is an essential gene for autophagy and development in C. elegans, but we discovered that its functions could be fully achieved independently of its localization to the membrane. This study reveals an essential role for the cleaved form of LGG-1 in autophagy but also in an autophagy-independent embryonic function. Our data question the use of lipidated GABARAP/LC3 as the main marker of autophagic flux and highlight the high plasticity of autophagy.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Humans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Autophagy , Autophagosomes/metabolism , Phagocytosis , Mammals/metabolism , Apoptosis Regulatory Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
5.
Methods Mol Biol ; 2602: 125-136, 2023.
Article in English | MEDLINE | ID: mdl-36446971

ABSTRACT

Protein ubiquitylation is an essential mechanism regulating almost all cellular functions in eukaryotes. The understanding of the role of distinct ubiquitin chains in different cellular processes is essential to identify biomarkers for disease diagnosis and prognosis but also to open new therapeutic possibilities. The high complexity of ubiquitin chains complicates this analysis, and multiple strategies have been developed over the last decades. Here, we report a protocol for the isolation and identification of K48 and K63 ubiquitin chains using chain-specific nanobodies associated to mass spectrometry. Different steps were optimized to increase the purification yield and reduce the binding on nonspecific proteins. The resulting protocol allows the enrichment of ubiquitin chain-specific targets from mammalian cells.


Subject(s)
Proteome , Single-Domain Antibodies , Animals , Ubiquitin , Mass Spectrometry , Ubiquitination , Mammals
6.
Methods Mol Biol ; 2602: 191-204, 2023.
Article in English | MEDLINE | ID: mdl-36446976

ABSTRACT

The ATG8 family of proteins regulates the autophagy process from the autophagosome maturation and cargo recruitment up to degradation. Autophagy dysfunction is involved in the development of multiple diseases. The LC3 interacting region (LIR)-based molecular traps have been designed to isolate endogenous ATG8 proteins and their interactors in order to facilitate the study of selective autophagy events. Here, we summarize protocols describing LC3 traps and sample preparation as well as adaptations for the analysis of ATG8 proteins in different biological models. This protocol was optimized to prepare affinity columns, reduce background, and improve the protein recovery to be analyzed by immunodetection with antibodies recognizing proteins of interest.


Subject(s)
Acclimatization , Macroautophagy , Autophagy-Related Protein 8 Family/genetics , Antibodies , Autophagy
7.
Methods Mol Biol ; 2602: 205-214, 2023.
Article in English | MEDLINE | ID: mdl-36446977

ABSTRACT

Mass spectrometry data on ubiquitin and ubiquitin-like modifiers are becoming increasingly more accessible, and the coverage progressively deepen as methodologies mature. This type of mass spectrometry data is linked to specific data analysis pipelines for ubiquitin. This chapter describes a computational tool to facilitate analysis of mass spectrometry data obtained on ubiquitin-enriched samples. For example, the analysis of ubiquitin branch site statistics and functional enrichment analysis against ubiquitin proteasome system protein sets are completed with a few functional calls. We foresee that the proposed computational methodology can aid in proximity drug design by, for example, elucidating the expression of E3 ligases and other factors related to the ubiquitin proteasome system.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Mass Spectrometry , Ubiquitin-Protein Ligases , Data Analysis
8.
Sci Rep ; 12(1): 7652, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538106

ABSTRACT

Autophagy is an essential cellular pathway that ensures degradation of a wide range of substrates including damaged organelles or large protein aggregates. Understanding how this proteolytic pathway is regulated would increase our comprehension on its role in cellular physiology and contribute to identify biomarkers or potential drug targets to develop more specific treatments for disease in which autophagy is dysregulated. Here, we report the development of molecular traps based in the tandem disposition of LC3-interacting regions (LIR). The estimated affinity of LC3-traps for distinct recombinant LC3/GABARAP proteins is in the low nanomolar range and allows the capture of these proteins from distinct mammalian cell lines, S. cerevisiae and C. elegans. LC3-traps show preferences for GABARAP/LGG1 or LC3/LGG2 and pull-down substrates targeted to proteaphagy and mitophagy. Therefore, LC3-traps are versatile tools that can be adapted to multiple applications to monitor selective autophagy events in distinct physiologic and pathologic circumstances.


Subject(s)
Caenorhabditis elegans , Macroautophagy , Animals , Autophagy , Caenorhabditis elegans/metabolism , Mammals/metabolism , Microtubule-Associated Proteins/metabolism , Models, Biological , Protein Binding , Saccharomyces cerevisiae/metabolism
9.
Cancers (Basel) ; 14(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35205670

ABSTRACT

Protein ubiquitylation coordinates crucial cellular events in physiological and pathological conditions. A comparative analysis of the ubiquitin proteome from bortezomib (BTZ)-sensitive and BTZ-resistant mantle cell lymphoma (MCL) revealed an enrichment of the autophagy-lysosome system (ALS) in BTZ-resistant cells. Pharmacological inhibition of autophagy at the level of lysosome-fusion revealed a constitutive activation of proteaphagy and accumulation of proteasome subunits within autophagosomes in different MCL cell lines with acquired or natural resistance to BTZ. Inhibition of the autophagy receptor p62/SQSTM1 upon verteporfin (VTP) treatment disrupted proteaphagosome assembly, reduced co-localization of proteasome subunits with autophagy markers and negatively impacted proteasome activity. Finally, the silencing or pharmacological inhibition of p62 restored the apoptosis threshold at physiological levels in BTZ-resistant cells both in vitro and in vivo. In total, these results demonstrate for the first time a proteolytic switch from the ubiquitin-proteasome system (UPS) to ALS in B-cell lymphoma refractory to proteasome inhibition, pointing out a crucial role for proteaphagy in this phenomenon and paving the way for the design of alternative therapeutic venues in treatment-resistant tumors.

10.
Semin Cell Dev Biol ; 132: 155-170, 2022 12.
Article in English | MEDLINE | ID: mdl-34895814

ABSTRACT

The proteome adapts to multiple situations occurring along the life of the cell. To face these continuous changes, the cell uses posttranslational modifications (PTMs) to control the localization, association with multiple partners, stability, and activity of protein targets. One of the most dynamic protein involved in PTMs is Ubiquitin (Ub). Together with other members of the same family, known as Ubiquitin-like (UbL) proteins, Ub rebuilds the architecture of a protein in a few minutes to change its properties in a very efficient way. This capacity of Ub and UbL is in part due to their potential to form complex architectures when attached to target proteins or when forming Ub chains. The highly dynamic formation and remodeling of Ub chains is regulated by the action of conjugating and deconjugating enzymes that determine, in due time, the correct chain architecture for a particular cellular function. Chain remodeling occurs in response to physiologic stimuli but also in pathologic situations. Here, we illustrate well-documented cases of chain remodeling during DNA repair, activation of the NF-κB pathway and autophagy, as examples of this dynamic regulation. The crucial role of enzymes and cofactors regulating chain remodeling is discussed.


Subject(s)
Protein Processing, Post-Translational , Ubiquitin , Ubiquitin/metabolism , Cell Physiological Phenomena , DNA Repair
11.
Cells ; 10(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34831026

ABSTRACT

3-Poly-phosphoinositides (PIP3) regulate cell survival, division, and migration. Both PI3-kinase (phosphoinositide-3-kinase) and PTEN (phosphatase and tensin-homolog in chromosome 10) control PIP3 levels, but the mechanisms connecting PI3-kinase and PTEN are unknown. Using non-transformed cells, the activation kinetics of PTEN and of the PIP3-effector AKT were examined after the addition of growth factors. Both epidermal growth factor and serum induced the early activation of AKT and the simultaneous inactivation of PTEN (at ~5 min). This PIP3/AKT peak was followed by a general reduction in AKT activity coincident with the recovery of PTEN phosphatase activity (at ~10-15 min). Subsequent AKT peaks and troughs followed. The fluctuation in AKT activity was linked to that of PTEN; PTEN reconstitution in PTEN-null cells restored AKT fluctuations, while PTEN depletion in control cells abrogated them. The analysis of PTEN activity fluctuations after the addition of growth factors showed its inactivation at ~5 min to be simultaneous with its transient ubiquitination, which was regulated by the ubiquitin E3 ligase cCBL (casitas B-lineage lymphoma proto-oncogene). Protein-protein interaction analysis revealed cCBL to be brought into the proximity of PTEN in a PI3-kinase-dependent manner. These results reveal a mechanism for PI3-kinase/PTEN crosstalk and suggest that cCBL could be new target in strategies designed to modulate PTEN activity in cancer.


Subject(s)
PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , Phosphatidylinositol Phosphates/metabolism , Phosphorylation/drug effects , Platelet-Derived Growth Factor/pharmacology , Serum/metabolism , Ubiquitination/drug effects
12.
Front Cell Dev Biol ; 9: 715868, 2021.
Article in English | MEDLINE | ID: mdl-34621739

ABSTRACT

Development is orchestrated through a complex interplay of multiple transcription factors. The comprehension of this interplay will help us to understand developmental processes. Here we analyze the relationship between two key transcription factors: CBX4, a member of the Polycomb Repressive Complex 1 (PRC1), and SALL1, a member of the Spalt-like family with important roles in embryogenesis and limb development. Both proteins localize to nuclear bodies and are modified by the small ubiquitin-like modifier (SUMO). Our results show that CBX4 and SALL1 interact in the nucleoplasm and that increased SALL1 expression reduces ubiquitination of CBX4, enhancing its stability. This is accompanied by an increase in the number and size of CBX4-containing Polycomb bodies, and by a greater repression of CBX4 target genes. Thus, our findings uncover a new way of SALL1-mediated regulation of Polycomb bodies through modulation of CBX4 stability, with consequences in the regulation of its target genes, which could have an impact in cell differentiation and development.

13.
Cell Mol Life Sci ; 78(8): 4053-4065, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33834259

ABSTRACT

Class I PI3K are heterodimers composed of a p85 regulatory subunit and a p110 catalytic subunit involved in multiple cellular functions. Recently, the catalytic subunit p110ß has emerged as a class I PI3K isoform playing a major role in tumorigenesis. Understanding its regulation is crucial for the control of the PI3K pathway in p110ß-driven cancers. Here we sought to evaluate the putative regulation of p110ß by SUMO. Our data show that p110ß can be modified by SUMO1 and SUMO2 in vitro, in transfected cells and under completely endogenous conditions, supporting the physiological relevance of p110ß SUMOylation. We identify lysine residue 952, located at the activation loop of p110ß, as essential for SUMOylation. SUMOylation of p110ß stabilizes the protein increasing its activation of AKT which promotes cell growth and oncogenic transformation. Finally, we show that the regulatory subunit p85ß counteracts the conjugation of SUMO to p110ß. In summary, our data reveal that SUMO is a novel p110ß interacting partner with a positive effect on the activation of the PI3K pathway.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Sumoylation , Animals , Catalytic Domain , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Enzyme Activation , Enzyme Stability , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , PC-3 Cells , Signal Transduction
14.
Cell Rep ; 34(3): 108635, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33472076

ABSTRACT

The ubiquitin-like molecule NEDD8 controls several biological processes and is a promising target for therapeutic intervention. NEDDylation occurs through specific NEDD8 enzymes (canonical) or enzymes of the ubiquitin system (atypical). Identification of NEDD8 sites on substrates is critical for delineating the processes controlled by NEDDylation. By combining the use of the NEDD8 R74K mutant with anti-di-glycine (anti-diGly) antibodies, we identified 1,101 unique NEDDylation sites in 620 proteins. Bioinformatics analysis reveals that canonical and atypical NEDDylation have distinct proteomes; the spliceosome/mRNA surveillance/DNA replication and ribosome/proteasome, respectively. The data also reveal the formation of poly-NEDD8, hybrid NEDD8-ubiquitin, and NEDD8-SUMO-2 chains as potential molecular signals. In particular, NEDD8-SUMO-2 chains are induced upon proteotoxic stress (atypical) through NEDDylation of K11 in SUMO-2, and conjugates accumulate in previously described nucleolus-related inclusions. The study uncovers a diverse proteome for NEDDylation and is consistent with the concept of extensive cross-talk between ubiquitin and Ubls under proteotoxic stress conditions.


Subject(s)
NEDD8 Protein/metabolism , Proteome/metabolism , Catalytic Domain , Cell Nucleolus/metabolism , Endopeptidases/metabolism , HCT116 Cells , Humans , NEDD8 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism
15.
FEBS Open Bio ; 11(1): 48-60, 2021 01.
Article in English | MEDLINE | ID: mdl-33410599

ABSTRACT

Acute myeloid leukaemia (AML) is a clonal disorder that affects hematopoietic stem cells or myeloid progenitors. One of the most common mutations that results in AML occurs in the gene encoding fms-like tyrosine kinase 3 (FLT3). Previous studies have demonstrated that AML cells expressing FLT3-internal tandem duplication (ITD) are more sensitive to the proteasome inhibitor bortezomib (Bz) than FLT3 wild-type cells, with this cytotoxicity being mediated by autophagy (Atg). Here, we show that proteasome inhibition with Bz results in modest but consistent proteaphagy in MOLM-14 leukemic cells expressing the FLT3-ITD mutation, but not in OCI-AML3 leukemic cells with wild-type FLT3. Chemical inhibition of Atg with bafilomycin A simultaneously blocked proteaphagy and resulted in the accumulation of the p62 Atg receptor in Bz-treated MOLM-14 cells. The use of ubiquitin traps revealed that ubiquitin plays an important role in proteasome-Atg cross-talk. The p62 inhibitor verteporfin blocked proteaphagy and, importantly, resulted in accumulation of high molecular weight forms of p62 and FLT3-ITD in Bz-treated MOLM-14 cells. Both Atg inhibitors enhanced Bz-induced apoptosis in FLT3-ITD-driven leukemic cells, highlighting the therapeutic potential of these treatments.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Macroautophagy/drug effects , Macrolides/pharmacology , Macrolides/therapeutic use , Mutation , Proteasome Inhibitors/therapeutic use , Verteporfin/pharmacology , Verteporfin/therapeutic use
16.
Molecules ; 25(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443527

ABSTRACT

Protein degradation is tightly regulated inside cells because of its utmost importance for protein homeostasis (proteostasis). The two major intracellular proteolytic pathways are the ubiquitin-proteasome and the autophagy-lysosome systems which ensure the fate of proteins when modified by various members of the ubiquitin family. These pathways are tightly interconnected by receptors and cofactors that recognize distinct chain architectures to connect with either the proteasome or autophagy under distinct physiologic and pathologic situations. The degradation of proteasome by autophagy, known as proteaphagy, plays an important role in this crosstalk since it favours the activity of autophagy in the absence of fully active proteasomes. Recently described in several biological models, proteaphagy appears to help the cell to survive when proteostasis is broken by the absence of nutrients or the excess of proteins accumulated under various stress conditions. Emerging evidence indicates that proteaphagy could be permanently activated in some types of cancer or when chemoresistance is observed in patients.


Subject(s)
Autophagy/genetics , Lysosomes/genetics , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics , Cell Physiological Phenomena/genetics , Humans , Macroautophagy/genetics , Proteolysis , Ubiquitination/genetics
17.
Adv Exp Med Biol ; 1233: 153-174, 2020.
Article in English | MEDLINE | ID: mdl-32274756

ABSTRACT

Since its introduction in the clinics in early 2000s, the proteasome inhibitor bortezomib (BTZ) significantly improved the prognosis of patients with multiple myeloma (MM) and mantle cell lymphoma (MCL), two of the most challenging B cell malignancies in western countries. However, relapses following BTZ therapy are frequent, while primary resistance to this agent remains a major limitation for further development of its therapeutic potential. In the present chapter, we recapitulate the molecular mechanisms associated with intrinsic and acquired resistance to BTZ learning from MM and MCL experience, including mutations of crucial genes and activation of prosurvival signalling pathways inherent to malignant B cells. We also outline the preclinical and clinical evaluations of some potential druggable targets associated to BTZ resistance, considering the most meaningful findings of the past 10 years. Although our understanding of BTZ resistance is far from being completed, recent discoveries are contributing to develop new approaches to treat relapsed MM and MCL patients.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Lymphoma, Mantle-Cell/drug therapy , Multiple Myeloma/drug therapy , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Recurrence, Local , Proteasome Endopeptidase Complex/metabolism
18.
Front Biosci (Landmark Ed) ; 25(3): 398-436, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31585894

ABSTRACT

Through lateral transfer, extra-cellular vesicles (EVs) transport their DNA, miRNA, mRNA and proteins such as enzymes mediating drug resistance, transporters as well as growth factors to neighboring cells. By virtue of this horizontal transfer, EVs potentially regulate cell growth, migration, angiogenesis and metastasis and increase tissue permeability in cancer. Furthermore, EVs regulate immune factors and allow the tumor cells to evade immune recognition and cell death. To explore if the proteomes of exosomes support functional transfer of cancer hallmarks, in this meta-analysis, we compared EVs and whole cell proteomes from the NCI-60 human tumor cell line panel. We observed a subgroup of proteins in each cancer hallmark signature as highly abundant and consistently expressed in EVs from all cell lines. Among these were oncoproteins frequently targeted in cancer therapies whose presence on EVs could potentially render therapies less effective by serving as decoys.


Subject(s)
Exosomes/metabolism , Extracellular Vesicles/metabolism , Neoplasms/metabolism , Oncogene Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Cell Line, Tumor , Humans , Neoplasms/pathology , Signal Transduction , Tumor Suppressor Proteins/metabolism
19.
J Vis Exp ; (153)2019 11 01.
Article in English | MEDLINE | ID: mdl-31736480

ABSTRACT

Post-translational modification is a key mechanism regulating protein homeostasis and function in eukaryotic cells. Among all ubiquitin-like proteins in liver cancer, the modification by SUMO (Small Ubiquitin MOdifier) has been given the most attention. Isolation of endogenous SUMOylated proteins in vivo is challenging due to the presence of active SUMO-specific proteases. Initial studies of SUMOylation in vivo were based on the molecular detection of specific SUMOylated proteins (e.g., by western blot). However, in many cases, antibodies, generally made with non-modified recombinant protein, did not immunoprecipitate SUMOylated forms of the protein of interest. Nickel chromatography has been the other approach to study SUMOylation by capturing histidine-tagged versions of SUMO molecules. This approach is mainly used in cells stably expressing or transiently transfected with His-SUMO molecules. To overcome these limitations, SUMO-binding entities (SUBEs) were developed to isolate endogenous SUMOylated proteins. Herein, we describe all the steps required for the enrichment, isolation, and identification of SUMOylated substrates from human hepatoma cells and hepatic tissues from a liver cancer mouse model by using SUBEs. Firstly, we describe methods involved in the preparation and lysis of the human hepatoma cells and liver tumor tissue samples. Then, a thorough explanation of the preparation of SUBEs and controls is detailed along with the protocol for the protein pull-down assays. Finally, some examples are provided regarding the options available for the identification and characterization of the SUMOylated proteome, namely the use of western-blot analysis for the detection of a specific SUMOylated substrate from liver tumors or the use of proteomics by mass spectrometry for high-throughput characterization of the SUMOylated proteome and interactome in hepatoma cells.


Subject(s)
Liver Neoplasms/metabolism , Protein Interaction Domains and Motifs , Proteome/metabolism , Small Ubiquitin-Related Modifier Proteins/isolation & purification , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Animals , Humans , Liver Neoplasms/pathology , Mice , Protein Binding , Proteome/analysis , Proteomics , Tumor Cells, Cultured , Ubiquitin/metabolism
20.
ACS Infect Dis ; 5(12): 2105-2117, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31644867

ABSTRACT

The ubiquitin proteasome system (UPS) is one of the main proteolytic pathways in eukaryotic cells, playing an essential role in key cellular processes such as cell cycling and signal transduction. Changes in some of the components of this pathway have been implicated in various conditions, including cancer and infectious diseases such as malaria. The success of therapies based on proteasome inhibitors has been shown in human clinical trials. In addition to its proven tractability, the essentiality of the Plasmodium falciparum UPS underlines its potential as a source of targets to identify new antimalarial treatments. Two assays, previously developed to quantify the parasite protein ubiquitylation levels in a high throughput format, have been used to identify compounds that inhibit parasite growth by targeting P. falciparum UPS. Among the positive hits, specific inhibitors of the P. falciparum proteasome have been identified and characterized. Hits identified using this approach may be used as starting points for development of new antimalarial drugs. They may also be used as tools to further understand proteasome function and to identify new targets in P. falciparum UPS.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/growth & development , Protozoan Proteins/chemistry , Antimalarials/chemistry , Hep G2 Cells , High-Throughput Screening Assays , Humans , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Protozoan Proteins/metabolism , THP-1 Cells , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL