Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37623597

ABSTRACT

The ecological success of lichens is related to both myco- and photobionts which condition the physiological limits of the lichen symbioses and thus affect their ecological niches and geographic ranges. A particular type of lichen, called cephalolichen, is characterized by housing both green algal and cyanobacterial symbionts-the latter is restricted to special structures called cephalodia. In this type of lichen, questions related to specialization within species or within individuals are still unsolved as different patterns have previously been observed. In order to study the variability at the intrathalline, intraspecific, and interspecific level, cyanobionts from different cephalodia within the same thalli and from different thalli were genetically analysed in three cephalolichen species at two different forests (18 thalli, 90 cephalodia). The results showed variability in the cephalodial Nostoc OTUs in all the studied species, both at the intrathalline and intraspecific levels. The variability of Nostoc OTUs found in different cephalodia of the same thallus suggests low specialization in this relationship. Additionally, differences in OTU diversity in the three studied species and in the two forests were found. The variability observed may confer an increased ecological plasticity and an advantage to colonize or persist under additional or novel habitats or conditions.

2.
Ecol Evol ; 13(7): e10296, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441095

ABSTRACT

Specialization, contextualized in a resource axis of an organism niche, is a core concept in ecology. In biotic interactions, specialization can be determined by the range of interacting partners. Evolutionary and ecological factors, in combination with the surveyed scale (spatial, temporal, biological, and/or taxonomic), influence the conception of specialization. This study aimed to assess the specialization patterns and drivers in the lichen symbiosis, considering the interaction between the principal fungus (mycobiont) and the associated Nostoc (cyanobiont), from a community perspective considering different spatial scales. Thus, we determined Nostoc phylogroup richness and composition of lichen communities in 11 Nothofagus pumilio forests across a wide latitudinal gradient in Chile. To measure specialization, cyanobiont richness, Simpson's and d' indices were estimated for 37 mycobiont species in these communities. Potential drivers that might shape Nostoc composition and specialization measures along the environmental gradient were analysed. Limitations in lichen distributional ranges due to the availability of their cyanobionts were studied. Turnover patterns of cyanobionts were identified at multiple spatial scales. The results showed that environmental factors shaped the Nostoc composition of these communities, thus limiting cyanobiont availability to establish the symbiotic association. Besides, specialization changed with the spatial scale and with the metric considered. Cyanolichens were more specialized than cephalolichens when considering partner richness and Simpson's index, whereas the d' index was mostly explained by mycobiont identity. Little evidence of lichen distributional ranges due to the distribution of their cyanobionts was found. Thus, lichens with broad distributional ranges either associated with several cyanobionts or with widely distributed cyanobionts. Comparisons between local and regional scales showed a decreasing degree of specialization at larger scales due to an increase in cyanobiont richness. The results support the context dependency of specialization and how its consideration changes with the metric and the spatial scale considered. Subsequently, we suggest considering the entire community and widening the spatial scale studied as it is crucial to understand factors determining specialization.

3.
Microorganisms ; 9(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917569

ABSTRACT

Community ecology has experienced a major transition, from a focus on patterns in taxonomic composition, to revealing the processes underlying community assembly through the analysis of species functional traits. The power of the functional trait approach is its generality, predictive capacity such as with respect to environmental change, and, through linkage of response and effect traits, the synthesis of community assembly with ecosystem function and services. Lichens are a potentially rich source of information about how traits govern community structure and function, thereby creating opportunity to better integrate lichens into 'mainstream' ecological studies, while lichen ecology and conservation can also benefit from using the trait approach as an investigative tool. This paper brings together a range of author perspectives to review the use of traits in lichenology, particularly with respect to European ecosystems from the Mediterranean to the Arctic-Alpine. It emphasizes the types of traits that lichenologists have used in their studies, both response and effect, the bundling of traits towards the evolution of life-history strategies, and the critical importance of scale (both spatial and temporal) in functional trait ecology.

SELECTION OF CITATIONS
SEARCH DETAIL
...