Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628953

ABSTRACT

Light and photoperiod are environmental signals that regulate flowering transition. In plants like Arabidopsis thaliana, this regulation relies on CONSTANS, a transcription factor that is negatively posttranslational regulated by phytochrome B during the morning, while it is stabilized by PHYA and cryptochromes 1/2 at the end of daylight hours. CO induces the expression of FT, whose protein travels from the leaves to the apical meristem, where it binds to FD to regulate some flowering genes. Although PHYB delays flowering, we show that light and PHYB positively regulate XAANTAL1 and other flowering genes in the shoot apices. Also, the genetic data indicate that XAL1 and FD participate in the same signaling pathway in flowering promotion when plants are grown under a long-day photoperiod at 22 °C. By contrast, XAL1 functions independently of FD or PIF4 to induce flowering at higher temperatures (27 °C), even under long days. Furthermore, XAL1 directly binds to FD, SOC1, LFY, and AP1 promoters. Our findings lead us to propose that light and temperature influence the floral network at the meristem level in a partially independent way of the signaling generated from the leaves.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Fever , Meristem/genetics , Phytochrome B , Temperature , Transcription Factors/genetics
2.
Article in English | MEDLINE | ID: mdl-37486539

ABSTRACT

Oxygenic photosynthesis is responsible for most of the fixation of atmospheric CO2. The microalgal community can transport atmospheric carbon into biological cycles in which no additional CO2 is created. This represents a resource to confront the actual climate change crisis. These organisms have evolved to adapt to several environments and different spectral distribution of light that may strongly influence their metabolism. Therefore, there is a need for development of photobioreactors specialized in addressing spectral optimization. Here, a multi-scale modular photobioreactor made from standard glass materials, ad hoc light circuits, and easily accessible, small commercial devices is described. The system is suitable to manage the principal culture variables of research in bioenergetics and photosynthesis. Its performance was tested by growing four evolutionary-distant microalgal species with different endosymbiotic scenarios: Chlamydomonas reinhardtii (Archaeplastida, green primary plastid), Polytomella parva (Archaeplastida, colorless plastid), Euglena gracilis (Discoba, green secondary plastid), and Phaeodactylum tricornutum (Stramenophiles, red secondary plastid). Our results show an improvement of biomass production, as compared to the traditional flask system. The modulation of the incident light spectra allowed us to observe a far-red adaptation in Euglena gracilis with a difference on paramylon production, and it also significantly increased the maximal cell density of the diatom species under green light. Together, these confirm that for photobioreactors with artificial light, manipulation of the light spectrum is a critical parameter for controlling the optimal performance, depending on the downstream goals.

3.
Sci Rep ; 10(1): 1338, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992784

ABSTRACT

Triosephosphate isomerase (TIM) is an enzyme of the glycolysis pathway which exists in almost all types of cells. Its structure is the prototype of a motif called TIM-barrel or (α/ß)8 barrel, which is the most common fold of all known enzyme structures. The simplest form in which TIM is catalytically active is a homodimer, in many species of bacteria and eukaryotes, or a homotetramer in some archaea. Here we show that the purified homodimeric TIMs from nine different species of eukaryotes and one of an extremophile bacterium spontaneously form higher order aggregates that can range from 3 to 21 dimers per macromolecular complex. We analysed these aggregates with clear native electrophoresis with normal and inverse polarity, blue native polyacrylamide gel electrophoresis, liquid chromatography, dynamic light scattering, thermal shift assay and transmission electron and fluorescence microscopies, we also performed bioinformatic analysis of the sequences of all enzymes to identify and predict regions that are prone to aggregation. Additionally, the capacity of TIM from Trypanosoma brucei to form fibrillar aggregates was characterized. Our results indicate that all the TIMs we studied are capable of forming oligomers of different sizes. This is significant because aggregation of TIM may be important in some of its non-catalytic moonlighting functions, like being a potent food allergen, or in its role associated with Alzheimer's disease.


Subject(s)
Protein Aggregates , Triose-Phosphate Isomerase/metabolism , Chromatography, Liquid , Computational Biology/methods , Dynamic Light Scattering , Enzyme Activation , Gene Expression , Kinetics , Protein Binding , Protein Multimerization , Sensitivity and Specificity , Species Specificity , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/isolation & purification
4.
Curr Protein Pept Sci ; 20(4): 304-315, 2019.
Article in English | MEDLINE | ID: mdl-30370845

ABSTRACT

Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the last decade multiple other functions, that may not necessarily always involve catalysis, have been described. These include variations in the degree of its expression in many types of cancer and participation in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/veterinary , Animal Diseases/enzymology , Carbohydrate Metabolism, Inborn Errors/veterinary , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/metabolism , Anemia, Hemolytic, Congenital Nonspherocytic/drug therapy , Anemia, Hemolytic, Congenital Nonspherocytic/metabolism , Animal Diseases/drug therapy , Animals , Carbohydrate Metabolism, Inborn Errors/drug therapy , Carbohydrate Metabolism, Inborn Errors/metabolism , Dihydroxyacetone Phosphate/metabolism , Glyceraldehyde 3-Phosphate/metabolism , Glycolysis , Humans
5.
PLoS One ; 6(4): e18791, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21533154

ABSTRACT

For a better comprehension of the structure-function relationship in proteins it is necessary to identify the amino acids that are relevant for measurable protein functions. Because of the numerous contacts that amino acids establish within proteins and the cooperative nature of their interactions, it is difficult to achieve this goal. Thus, the study of protein-ligand interactions is usually focused on local environmental structural differences. Here, using a pair of triosephosphate isomerase enzymes with extremely high homology from two different organisms, we demonstrate that the control of a seventy-fold difference in reactivity of the interface cysteine is located in several amino acids from two structurally unrelated regions that do not contact the cysteine sensitive to the sulfhydryl reagent methylmethane sulfonate, nor the residues in its immediate vicinity. The change in reactivity is due to an increase in the apparent pKa of the interface cysteine produced by the mutated residues. Our work, which involved grafting systematically portions of one protein into the other protein, revealed unsuspected and multisite long-range interactions that modulate the properties of the interface cysteines and has general implications for future studies on protein structure-function relationships.


Subject(s)
Amino Acids/chemistry , Triose-Phosphate Isomerase/metabolism , Trypanosoma/enzymology , Amino Acid Sequence , Animals , Base Sequence , Biocatalysis , DNA Primers , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL