Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 105(23): 8805-8822, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34716462

ABSTRACT

Actinobacteria embroil Gram-positive microbes with high guanine and cytosine contents in their DNA. They are the source of most antimicrobials of bacterial origin utilized in medicine today. Their genomes are among the richest in novel secondary metabolites with high biotechnological potential. Actinobacteria reveal complex patterns of evolution, responses, and adaptations to their environment, which are not yet well understood. We analyzed three novel plant isolates and explored their habitat adaptation, evolutionary patterns, and potential secondary metabolite production. The phylogenomically characterized isolates belonged to Actinoplanes sp. TFC3, Streptomyces sp. L06, and Embleya sp. NF3. Positively selected genes, relevant in strain evolution, encoded enzymes for stress resistance in all strains, including porphyrin, chlorophyll, and ubiquinone biosynthesis in Embleya sp. NF3. Streptomyces sp. L06 encoded for pantothenate and proteins for CoA biosynthesis with evidence of positive selection; furthermore, Actinoplanes sp. TFC3 encoded for a c-di-GMP synthetase, with adaptive mutations. Notably, the genomes harbored many genes involved in the biosynthesis of at least ten novel secondary metabolites, with many avenues for future new bioactive compound characterization-specifically, Streptomyces sp. L06 could make new ribosomally synthesized and post-translationally modified peptides, while Embleya sp. NF3 could produce new non-ribosomal peptide synthetases and ribosomally synthesized and post-translationally modified peptides. At the same time, TFC3 has particularly enriched in terpene and polyketide synthases. All the strains harbored conserved genes in response to diverse environmental stresses, plant growth promotion factors, and degradation of various carbohydrates, which supported their endophytic lifestyle and showed their capacity to colonize other niches. This study aims to provide a comprehensive estimation of the genomic features of novel Actinobacteria. It sets the groundwork for future research into experimental tests with new bioactive metabolites with potential application in medicine, biofertilizers, and plant biomass residue utilization, with potential application in medicine, as biofertilizers and in plant biomass residues utilization. KEY POINTS: • Potential of novel environmental bacteria for secondary metabolites production • Exploring the genomes of three novel endophytes isolated from a medicinal tree • Pan-genome analysis of Actinobacteria genera.


Subject(s)
Actinobacteria , Streptomyces , Actinobacteria/genetics , Genomics , Phylogeny , Polyketide Synthases/genetics , Streptomyces/genetics
2.
Curr Opin Pharmacol ; 48: 1-7, 2019 10.
Article in English | MEDLINE | ID: mdl-30921690

ABSTRACT

New anti-infective drugs are an unmet necessity of modern medicine. The use of ∼omics technologies has exponentially increased the knowledge on active anti-infective structures, where to search for them and their mechanisms of action. Research involving extreme and unique environments (such as endophytes) revealed their potential for many yet unknown active molecules. This work intends to review a recent research involving discovery of secondary metabolites with an established anti-infective action which was mediated by one of the ∼omics sciences: genomics, proteomics, transcriptomics, metabolomics, glycomics or their combinations, as well as the software at the base of these discoveries.


Subject(s)
Anti-Infective Agents , Drug Discovery , Genomics , Metabolomics , Databases, Factual , Humans , Software
3.
PLoS One ; 13(2): e0192618, 2018.
Article in English | MEDLINE | ID: mdl-29447216

ABSTRACT

Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.


Subject(s)
Genome, Bacterial , Plants/microbiology , Streptomyces/genetics , Symbiosis
5.
Genome Announc ; 5(17)2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28450524

ABSTRACT

We report the draft genome sequence of Streptomyces scabrisporus NF3, an endophyte isolated from Amphipterygium adstringens in Chiapas, Mexico. This strain produces a new modified linaridin peptide. The genome harbors at least 50 gene clusters for synthases of polyketide and nonribosomal peptides, suggesting a prospective production of various secondary metabolites.

SELECTION OF CITATIONS
SEARCH DETAIL
...