Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Infect ; 25(8): 105217, 2023.
Article in English | MEDLINE | ID: mdl-37716437

ABSTRACT

Little is known about the clonality of consecutive OXA-48 producing-Klebsiella pneumoniae isolates from the same patient and the possibility of changes in their virulomes over time. We studied the molecular characteristics of twenty OXA-48-producing K. pneumoniae consecutive isolates from six patients using whole-genome sequencing. The genomes were screened for antimicrobial resistance and virulence factor genes and for replicon groups. MLST and SNPs analysis was performed. MLST analysis found 3 STs: ST11 (n = 13; 65.0%); ST4975 (n = 5, 25.0%); ST307 (n = 2; 10.0%). AcrAb efflux pump, siderophore enterobactin and rcsAB capsule synthesis regulator were detected in all sequenced isolates. The regulator of mucoid phenotype A (rmpA) and rmpA2 were not detected. Isolates also carried type 3 fimbriae (n = 19; 95.0%), yersiniabactin (n = 15; 75.0%) and type 1 fimbriae (7; 35.0%). Type 3 fimbriae and yersiniabactin were lost and recovered in consecutive isolates of two patients, probably acquired by horizontal gene transfer. Our findings reveal that recurrent infections are due to the same isolate, with an average of 2.69 SNPs per month, with different virulence profiles, and that the acquisition of virulence factor genes over time is possible.


Subject(s)
Bacterial Proteins , Klebsiella Infections , Humans , Bacterial Proteins/genetics , beta-Lactamases/genetics , Klebsiella pneumoniae , Multilocus Sequence Typing , Virulence Factors/genetics , Microbial Sensitivity Tests , High-Throughput Nucleotide Sequencing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
Antibiotics (Basel) ; 12(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37370318

ABSTRACT

The OXA-10 class D ß-lactamase has been reported to contribute to carbapenem resistance in non-fermenting Gram-negative bacilli; however, its contribution to carbapenem resistance in Enterobacterales is unknown. In this work, minimum inhibitory concentrations (MICs), whole genome sequencing (WGS), cloning experiments, kinetic assays, molecular modelling studies, and biochemical assays for carbapenemase detection were performed to determine the impact of OXA-10 production on carbapenem resistance in two XDR clinical isolates of Escherichia coli with the carbapenem resistance phenotype (ertapenem resistance). WGS identified the two clinical isolates as belonging to ST57 in close genomic proximity to each other. Additionally, the presence of the blaOXA-10 gene was identified in both isolates, as well as relevant mutations in the genes coding for the OmpC and OmpF porins. Cloning of blaOXA-10 in an E. coli HB4 (OmpC and OmpF-deficient) demonstrated the important contribution of OXA-10 to increased carbapenem MICs when associated with porin deficiency. Kinetic analysis showed that OXA-10 has low carbapenem-hydrolysing activity, but molecular models revealed interactions of this ß-lactamase with the carbapenems. OXA-10 was not detected with biochemical tests used in clinical laboratories. In conclusion, the ß-lactamase OXA-10 limits the activity of carbapenems in Enterobacterales when combined with low permeability and should be monitored in the future.

3.
Anaerobe ; 74: 102519, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35066151

ABSTRACT

We describe a case of interspecies transmission of toxigenic Clostridioides difficile involving a female and her dog, both with diarrhea without another diagnosis. Genomic analysis showed that isolates were grouped into MLST clade I, closely related to ribotype 020 and shared identical genotypes.


Subject(s)
Clostridioides difficile , Clostridium Infections , Animals , Clostridioides difficile/genetics , Clostridium Infections/diagnosis , Clostridium Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary , Dogs , Female , Humans , Multilocus Sequence Typing , Ribotyping
SELECTION OF CITATIONS
SEARCH DETAIL