Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5413, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669956

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is a serious public health problem due to its high incidence and metastatic potential. It may progress from actinic keratosis (AK), a precancerous lesion, or the in situ carcinoma, Bowen's disease (BD). During this progression, malignant keratinocytes activate dermal fibroblasts into tumor promoting cancer-associated fibroblasts (CAFs), whose origin and emergence remain largely unknown. Here, we generate and analyze >115,000 single-cell transcriptomes from healthy skin, BD and cSCC of male donors. Our results reveal immunoregulatory and matrix-remodeling CAF subtypes that may derive from pro-inflammatory and mesenchymal fibroblasts, respectively. These CAF subtypes are largely absent in AK and interact with different cell types to establish a pro-tumorigenic microenvironment. These findings are cSCC-specific and could not be recapitulated in basal cell carcinomas. Our study provides important insights into the potential origin and functionalities of dermal CAFs that will be highly beneficial for the specific targeting of the cSCC microenvironment.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma in Situ , Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Keratosis, Actinic , Skin Neoplasms , Male , Humans , Tumor Microenvironment
2.
iScience ; 26(8): 107300, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37554463

ABSTRACT

METTL3 is the major writer of N6-Methyladenosine (m6A) and has been associated with controversial roles in cancer. This is best illustrated in urothelial carcinoma of the bladder (UCB), where METTL3 was described to have both oncogenic and tumor-suppressive functions. Here, we reinvestigated the role of METTL3 in UCB. METTL3 knockout reduced the oncogenic phenotype and m6A levels of UCB cell lines. However, complete depletion of METTL3/m6A was not achieved due to selection of cells expressing alternative METTL3 isoforms. Systematic vulnerability and inhibitor response analyses suggested that uroepithelial cells depend on METTL3 for viability. Furthermore, expression and survival analyses of clinical data revealed a complex role for METTL3 in UCB, with decreased m6A mRNA levels in UCB tumors. Our results suggest that METTL3 expression may be a suitable diagnostic UCB biomarker, as the enzyme promotes UCB formation. However, the suitability of the enzyme as a therapeutic target should be evaluated carefully.

3.
Nucleic Acids Res ; 50(17): 9838-9857, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36124662

ABSTRACT

High mobility group (HMG) proteins are chromatin regulators with essential functions in development, cell differentiation and cell proliferation. The protein HMG20A is predicted by the AlphaFold2 software to contain three distinct structural elements, which we have functionally characterized: i) an amino-terminal, intrinsically disordered domain with transactivation activity; ii) an HMG box with higher binding affinity for double-stranded, four-way-junction DNA than for linear DNA; and iii) a long coiled-coil domain. Our proteomic study followed by a deletion analysis and structural modeling demonstrates that HMG20A forms a complex with the histone reader PHF14, via the establishment of a two-stranded alpha-helical coiled-coil structure. siRNA-mediated knockdown of either PHF14 or HMG20A in MDA-MB-231 cells causes similar defects in cell migration, invasion and homotypic cell-cell adhesion ability, but neither affects proliferation. Transcriptomic analyses demonstrate that PHF14 and HMG20A share a large subset of targets. We show that the PHF14-HMG20A complex modulates the Hippo pathway through a direct interaction with the TEAD1 transcription factor. PHF14 or HMG20A deficiency increases epithelial markers, including E-cadherin and the epithelial master regulator TP63 and impaired normal TGFß-trigged epithelial-to-mesenchymal transition. Taken together, these data indicate that PHF14 and HMG20A cooperate in regulating several pathways involved in epithelial-mesenchymal plasticity.


Subject(s)
High Mobility Group Proteins/metabolism , Histones , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Chromatin , Hippo Signaling Pathway , Histones/metabolism , Humans , Proteomics , RNA, Small Interfering , Transcription Factors/genetics , Transforming Growth Factor beta/genetics
4.
Mol Syst Biol ; 18(9): e11073, 2022 09.
Article in English | MEDLINE | ID: mdl-36121124

ABSTRACT

Keratinocyte cancers (KC) are the most prevalent malignancies in fair-skinned populations, posing a significant medical and economic burden to health systems. KC originate in the epidermis and mainly comprise basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Here, we combined single-cell multi-omics, transcriptomics, and methylomics to investigate the epigenomic dynamics during epidermal differentiation. We identified ~3,800 differentially accessible regions between undifferentiated and differentiated keratinocytes, corresponding to regulatory regions associated with key transcription factors. DNA methylation at these regions defined AK/cSCC subtypes with epidermal stem cell- or keratinocyte-like features. Using cell-type deconvolution tools and integration of bulk and single-cell methylomes, we demonstrate that these subclasses are consistent with distinct cells-of-origin. Further characterization of the phenotypic traits of the subclasses and the study of additional unstratified KC entities uncovered distinct clinical features for the subclasses, linking invasive and metastatic KC cases with undifferentiated cells-of-origin. Our study provides a thorough characterization of the epigenomic dynamics underlying human keratinocyte differentiation and uncovers novel links between KC cells-of-origin and their prognosis.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Epigenomics , Humans , Keratinocytes/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription Factors
5.
Cancer Discov ; 11(3): 638-659, 2021 03.
Article in English | MEDLINE | ID: mdl-33060108

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/metabolism , DNA Methylation , Interferons/metabolism , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , Repetitive Sequences, Nucleic Acid , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , CpG Islands , Disease Progression , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Reproducibility of Results , Signal Transduction , Transcriptome , Tumor Microenvironment/genetics
6.
Genome Med ; 12(1): 46, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32450911

ABSTRACT

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disease characterized by the early onset of age-related phenotypes including arthritis, loss of body fat and hair, and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein lamin A (termed progerin) and have previously been shown to exhibit prominent histone modification changes. METHODS: Here, we analyze the possibility that epigenetic deregulation of lamina-associated domains (LADs) is involved in the molecular pathology of HGPS. To do so, we studied chromatin accessibility (Assay for Transposase-accessible Chromatin (ATAC)-see/-seq), DNA methylation profiles (Infinium MethylationEPIC BeadChips), and transcriptomes (RNA-seq) of nine primary HGPS fibroblast cell lines and six additional controls, two parental and four age-matched healthy fibroblast cell lines. RESULTS: Our ATAC-see/-seq data demonstrate that primary dermal fibroblasts from HGPS patients exhibit chromatin accessibility changes that are enriched in LADs. Infinium MethylationEPIC BeadChip profiling further reveals that DNA methylation alterations observed in HGPS fibroblasts are similarly enriched in LADs and different from those occurring during healthy aging and Werner syndrome (WS), another premature aging disease. Moreover, HGPS patients can be stratified into two different subgroups according to their DNA methylation profiles. Finally, we show that the epigenetic deregulation of LADs is associated with HGPS-specific gene expression changes. CONCLUSIONS: Taken together, our results strongly implicate epigenetic deregulation of LADs as an important and previously unrecognized feature of HGPS, which contributes to disease-specific gene expression. Therefore, they not only add a new layer to the study of epigenetic changes in the progeroid syndrome, but also advance our understanding of the disease's pathology at the cellular level.


Subject(s)
Lamin Type A/genetics , Progeria/genetics , Cell Line , DNA Methylation , Epigenesis, Genetic , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Protein Domains
7.
Commun Biol ; 3(1): 188, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327715

ABSTRACT

Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.


Subject(s)
Cellular Senescence/genetics , Fibroblasts/metabolism , Gene Expression Profiling , Single-Cell Analysis , Skin Aging/genetics , Skin/metabolism , Transcriptome , Adult , Age Factors , Aged , Aged, 80 and over , Cell Communication , Female , Humans , Male , Middle Aged , Phenotype , RNA-Seq , Skin/cytology
8.
J Invest Dermatol ; 140(1): 38-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31427190

ABSTRACT

The formation and maintenance of the epidermis depend on epidermal stem cell differentiation and must be tightly regulated. Epigenetic mechanisms such as DNA methylation allow the precise gene expression cascade needed during cellular differentiation. However, these mechanisms become deregulated during aging and tumorigenesis, where cellular function and identity become compromised. Here we provide a review of this rapidly developing field. We discuss recent discoveries related to epidermal homeostasis, aging, and cancer, including the functional role of DNA methyltransferases, the methylation clock, and the determination of tumor cells-of-origin. Finally, we focus on future advances, greatly influenced by single-cell sequencing technologies.


Subject(s)
Aging/physiology , Epidermis/physiology , Neoplasms/pathology , Animals , Carcinogenesis , Cell Differentiation , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Humans , Neoplasms/genetics
10.
Cell Rep ; 23(11): 3407-3418, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29898408

ABSTRACT

Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages. Importantly, colorectal carcinomas could be classified into the same methylation subtypes, reflecting their shared cell types of origin with adenomas. Further data analysis also revealed significantly reduced overall survival for one of the subtypes. Our results provide a concept for understanding the methylation patterns observed in colorectal cancer and provide opportunities for tumor subclassification and patient stratification.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/pathology , DNA Methylation , Adenoma/classification , Adenoma/genetics , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/classification , Colorectal Neoplasms/genetics , Epigenomics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Transcription Factors/metabolism
11.
Haematologica ; 103(9): 1462-1471, 2018 09.
Article in English | MEDLINE | ID: mdl-29773599

ABSTRACT

Mesenchymal stromal cells are involved in the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia, but the underlying mechanisms are incompletely understood. To further characterize the pathological phenotype we performed RNA sequencing of mesenchymal stromal cells from patients with myelodysplastic syndromes and acute myeloid leukemia and found a specific molecular signature of genes commonly deregulated in these disorders. Pathway analysis showed a strong enrichment of genes related to osteogenesis, senescence, inflammation and inhibitory cytokines, thereby reflecting the structural and functional deficits of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia on a molecular level. Further analysis identified transforming growth factor ß1 as the most probable extrinsic trigger factor for this altered gene expression. Following exposure to transforming growth factor ß1, healthy mesenchymal stromal cells developed functional deficits and adopted a phenotype reminiscent of that observed in patient-derived stromal cells. These suppressive effects of transforming growth factor ß1 on stromal cell functionality were abrogated by SD-208, an established inhibitor of transforming growth factor ß receptor signaling. Blockade of transforming growth factor ß signaling by SD-208 also restored the osteogenic differentiation capacity of patient-derived stromal cells, thus confirming the role of transforming growth factor ß1 in the bone marrow microenvironment of patients with myelodysplastic syndromes and acute myeloid leukemia. Our findings establish transforming growth factor ß1 as a relevant trigger causing functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia and identify SD-208 as a candidate to revert these effects.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mesenchymal Stem Cells/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Transforming Growth Factor beta1/genetics , Adult , Aged , Aged, 80 and over , Biomarkers , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/pathology , Male , Mesenchymal Stem Cells/drug effects , Middle Aged , Myelodysplastic Syndromes/pathology , Osteogenesis/drug effects , Osteogenesis/genetics , Phenotype , Pteridines/pharmacology , Sequence Analysis, RNA , Signal Transduction , Transforming Growth Factor beta1/metabolism
12.
Nat Commun ; 9(1): 577, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422656

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and usually progresses from a UV-induced precancerous lesion termed actinic keratosis (AK). Despite various efforts to characterize these lesions molecularly, the etiology of AK and its progression to cSCC remain partially understood. Here, we use Infinium MethylationEPIC BeadChips to interrogate the DNA methylation status in healthy, AK and cSCC epidermis samples. Importantly, we show that AK methylation patterns already display classical features of cancer methylomes and are highly similar to cSCC profiles. Further analysis identifies typical features of stem cell methylomes, such as reduced DNA methylation age, non-CpG methylation, and stem cell-related keratin and enhancer methylation patterns. Interestingly, this signature is detected only in half of the samples, while the other half shows patterns more closely related to healthy epidermis. These findings suggest the existence of two subclasses of AK and cSCC emerging from distinct keratinocyte differentiation stages.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Keratosis, Actinic/genetics , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cell Differentiation , Female , Humans , Keratinocytes , Male , Middle Aged , Young Adult
13.
Oncotarget ; 9(4): 4395-4410, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29435111

ABSTRACT

DNA methylation is important for gene expression and genome stability, and its disruption is thought to play a key role in the initiation and progression of cancer and other diseases. The DLK1-DIO3 cluster has been shown to be imprinted in humans, and some of its components are relevant to diverse pathological processes. The purpose of this study was to assess the methylation patterns of the DLK1-DIO3 cluster in patients with lung cancer to study its relevance in the pathogenesis of this disease. We found a characteristic methylation pattern of this cluster in smoking associated lung cancer, as compared to normal lung tissue. This methylation profile is not patent however in lung cancer of never smokers nor in lung tissue of COPD patients. We found 3 deregulated protein-coding genes at this locus: one was hypermethylated (DIO3) and two were hypomethylated (DLK1 and RTL1). Statistically significant differences were also detected in two different families of SNORDs, two miRNA clusters and four lncRNAs (MEG3, MEG8, MEG9 and LINC00524). These findings were validated using data from the cancer genome atlas (TCGA) database. We have then showed an inverse correlation between DNA methylation and expression levels in 5 randomly selected genes. Several targets of miRNAs included in the DLK1-DIO3 cluster have been experimentally verified as tumor suppressors. All of these results suggest that the dysmethylation of the imprinted DLK1-DIO3 cluster could have a relevant role in the pathogenesis of lung cancer in current and former smokers and may be used for diagnostic and/or therapeutic purposes.

14.
Mol Cancer Res ; 16(3): 390-402, 2018 03.
Article in English | MEDLINE | ID: mdl-29330288

ABSTRACT

Most lung cancer deaths are related to metastases, which indicates the necessity of detecting and inhibiting tumor cell dissemination. Here, we aimed to identify miRNAs involved in metastasis of lung adenocarcinoma as prognostic biomarkers and therapeutic targets. To that end, lymph node metastasis-associated miRNAs were identified in The Cancer Genome Atlas lung adenocarcinoma patient cohort (sequencing data; n = 449) and subsequently validated by qRT-PCR in an independent clinical cohort (n = 108). Overexpression of miRNAs located on chromosome 14q32 was associated with metastasis in lung adenocarcinoma patients. Importantly, Kaplan-Meier analysis and log-rank test revealed that higher expression levels of individual 14q32 miRNAs (mir-539, mir-323b, and mir-487a) associated with worse disease-free survival of never-smoker patients. Epigenetic analysis including DNA methylation microarray data and bisulfite sequencing validation demonstrated that the induction of 14q32 cluster correlated with genomic hypomethylation of the 14q32 locus. CRISPR activation technology, applied for the first time to functionally study the increase of clustered miRNA levels in a coordinated manner, showed that simultaneous overexpression of 14q32 miRNAs promoted tumor cell migratory and invasive properties. Analysis of individual miRNAs by mimic transfection further illustrated that miR-323b-3p, miR-487a-3p, and miR-539-5p significantly contributed to the invasive phenotype through the indirect regulation of different target genes. In conclusion, overexpression of 14q32 miRNAs, associated with the respective genomic hypomethylation, promotes metastasis and correlates with poor patient prognosis in lung adenocarcinoma.Implications: This study points to chromosome 14q32 miRNAs as promising targets to inhibit tumor cell dissemination and to predict patient prognosis in lung adenocarcinoma. Mol Cancer Res; 16(3); 390-402. ©2018 AACR.


Subject(s)
Adenocarcinoma of Lung/genetics , Chromosomes, Human, Pair 14 , MicroRNAs/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Cohort Studies , Epigenesis, Genetic , Female , Humans , Male , Neoplasm Metastasis , Prognosis
15.
Cell Stress ; 1(1): 55-67, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-31225434

ABSTRACT

Isocitrate dehydrogenases 1 and 2 (IDH1/2) are recurrently mutated in acute myeloid leukemia (AML), but their mechanistic role in leukemogenesis is poorly understood. The inhibition of TET enzymes by D-2-hydroxyglutarate (D-2-HG), which is produced by mutant IDH1/2 (mIDH1/2), has been suggested to promote epigenetic deregulation during tumorigenesis. In addition, mIDH also induces a differentiation block in various cell culture and mouse models. Here we analyze the genomic methylation patterns of AML patients with mIDH using Infinium 450K data from a large AML cohort and found that mIDH is associated with pronounced DNA hypermethylation at tens of thousands of CpGs. Interestingly, however, myeloid leukemia cells overexpressing mIDH, cells that were cultured in the presence of D-2-HG or TET2 mutant AML patients did not show similar methylation changes. In further analyses, we also characterized the methylation landscapes of myeloid progenitor cells and analyzed their relationship to mIDH-associated hypermethylation. Our findings identify the differentiation state of myeloid cells, rather than inhibition of TET-mediated DNA demethylation, as a major factor of mIDH-associated hypermethylation in AML. Furthermore, our results are also important for understanding the mode of action of currently developed mIDH inhibitors.

16.
Aging Cell ; 15(3): 563-71, 2016 06.
Article in English | MEDLINE | ID: mdl-27004597

ABSTRACT

Epigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age-related changes in DNA methylation at the genome scale have been termed 'epigenetic drift', but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding age-related epigenetic changes because of its substantial cell-type homogeneity and its well-known age-related phenotype. We have now generated and analyzed the currently largest set of human epidermis methylomes (N = 108) using array-based profiling of 450 000 methylation marks in various age groups. Data analysis confirmed that age-related methylation differences are locally restricted and characterized by relatively small effect sizes. Nevertheless, methylation data could be used to predict the chronological age of sample donors with high accuracy. We also identified discontinuous methylation changes as a novel feature of the aging methylome. Finally, our analysis uncovered an age-related erosion of DNA methylation patterns that is characterized by a reduced dynamic range and increased heterogeneity of global methylation patterns. These changes in methylation variability were accompanied by a reduced connectivity of transcriptional networks. Our findings thus define the loss of epigenetic regulatory fidelity as a key feature of the aging epigenome.


Subject(s)
DNA Methylation/genetics , Gene Regulatory Networks/genetics , Skin Aging/genetics , Transcription, Genetic , Adolescent , Adult , Aged , Epigenesis, Genetic , Humans , Middle Aged , Models, Biological , Young Adult
17.
Neurobiol Dis ; 67: 49-56, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24657916

ABSTRACT

Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Neural Tube/growth & development , Neural Tube/metabolism , Amino Acid Sequence , Animals , Apoptosis , Chickens , Gene Dosage , Humans , Methyl-CpG-Binding Protein 2/metabolism , Molecular Sequence Data , Spinal Cord/growth & development , Spinal Cord/metabolism
18.
Nucleic Acids Res ; 42(4): 2185-96, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24265227

ABSTRACT

The precise regulation of S-phase-specific genes is critical for cell proliferation. How the repressive chromatin configuration mediated by the retinoblastoma protein and repressor E2F factors changes at the G1/S transition to allow transcription activation is unclear. Here we show ChIP-on-chip studies that reveal that the chromatin remodeller CHD8 binds ∼ 2000 transcriptionally active promoters. The spectrum of CHD8 target genes was enriched in E2F-dependent genes. We found that CHD8 binds E2F-dependent promoters at the G1/S transition but not in quiescent cells. Consistently, CHD8 was required for G1/S-specific expression of these genes and for cell cycle re-entry on serum stimulation of quiescent cells. We also show that CHD8 interacts with E2F1 and, importantly, loading of E2F1 and E2F3, but not E2F4, onto S-specific promoters, requires CHD8. However, CHD8 recruiting is independent of these factors. Recruiting of MLL histone methyltransferase complexes to S-specific promoters was also severely impaired in the absence of CHD8. Furthermore, depletion of CHD8 abolished E2F1 overexpression-dependent S-phase stimulation of serum-starved cells, highlighting the essential role of CHD8 in E2F-dependent transcription activation.


Subject(s)
DNA-Binding Proteins/metabolism , E2F Transcription Factors/metabolism , S Phase/genetics , Transcription Factors/metabolism , Transcriptional Activation , Animals , Cell Line , E2F1 Transcription Factor/metabolism , E2F3 Transcription Factor/metabolism , Humans , Promoter Regions, Genetic
19.
PLoS One ; 7(5): e37759, 2012.
Article in English | MEDLINE | ID: mdl-22662213

ABSTRACT

It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.


Subject(s)
Co-Repressor Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Mitosis/genetics , S Phase/genetics , Transcription, Genetic , Cell Line , Cluster Analysis , Computational Biology/methods , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/chemistry , Cyclins/genetics , Gene Expression Profiling , Gene Expression Regulation , Humans , K562 Cells , Keratinocytes/metabolism , Promoter Regions, Genetic , Protein Binding
20.
Proc Natl Acad Sci U S A ; 109(21): 8085-90, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22570500

ABSTRACT

The LSD1-CoREST histone demethylase complex is required to repress neuronal genes in nonneuronal tissues. Here we show that sumoylation of Braf35, one of the subunits of the complex, is required to maintain full repression of neuron-specific genes and for occupancy of the LSD1-CoREST complex at its gene targets. Interestingly, expression of Braf35 was sufficient to prevent neuronal differentiation induced by bHLH neurogenic transcription factors in P19 cells and in neuronal progenitors of the chicken embryo neural tube. Sumoylation of Braf35 is required for this antineurogenic activity. We also show that iBraf, a paralogue of Braf35, forms heterodimers with Braf35. Braf35-iBraf heterodimerization impairs Braf35 interaction with the LSD1-CoREST complex and inhibits Braf35 sumoylation. Consistent with these results, iBraf prevents the antineurogenic activity of Braf35 in vivo. Our data uncover a mechanism of regulation of the LSD1-CoREST complex and provide a molecular explanation for the antagonism between Braf35 and iBraf in neuronal differentiation.


Subject(s)
High Mobility Group Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Neurons/cytology , Oxidoreductases, N-Demethylating/metabolism , Repressor Proteins/metabolism , Animals , Cell Cycle Proteins , Cell Differentiation/physiology , Chick Embryo , Chickens , Co-Repressor Proteins , DNA-Binding Proteins , Dimerization , Embryonal Carcinoma Stem Cells/cytology , Gene Expression Regulation/physiology , HEK293 Cells , HeLa Cells , High Mobility Group Proteins/chemistry , High Mobility Group Proteins/genetics , Histone Demethylases/chemistry , Histone Demethylases/metabolism , Humans , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/chemistry , Oxidoreductases, N-Demethylating/chemistry , Repressor Proteins/chemistry , Sumoylation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...