Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacology ; 108(6): 521-529, 2023.
Article in English | MEDLINE | ID: mdl-37673038

ABSTRACT

INTRODUCTION: Obesity during pregnancy can contribute to hypertensive complications through changes in glucose utilization. We investigated the impact of vascular glucose uptake, GLUT4 density, and endothelium on agonist-induced vasoconstriction in the aortas of overweight pregnant rats. METHODS: Isolated aortic rings with or without endothelium from pregnant or nonpregnant rats fed a standard (SD) or hypercaloric diet (HD) were contracted with phenylephrine or serotonin (10-9 to 10-4M) using standard (11 mm) or without (0 mm) glucose Krebs solution. GLUT4 density in the aortas was measured using the en face method. RESULTS: Aortas from overweight pregnant animals (PHD) showed increased Phe-induced vasoconstriction (p < 0.05 vs. pregnant standard diet [PSD]), which was endothelium-independent. The contraction decreased significantly in the absence of glucose. In contrast, vessels from pregnant SD rats maintained their contraction in glucose-free Krebs solution. 5-HT increases PHD aortic contraction only in the absence of glucose. The fetal aortas from PHD mothers showed blunted vasoconstriction. Overweight significantly reduced GLUT4 expression in maternal and fetal aortas (p < 0.05 vs. PSD). CONCLUSIONS: Aortic contractility is independent of glucose uptake during healthy pregnancy. In contrast, overweight pregnancy increases contractility. This increase depends directly on smooth muscle glucose uptake and inversely on GLUT-4 density. The increased contraction observed in the vasculature of overweight mothers was inverted in the fetal aortas.


Subject(s)
Overweight , Pregnancy , Vasoconstriction , Animals , Female , Pregnancy/metabolism , Rats , Aorta , Blood Glucose/metabolism , Endothelium, Vascular , Overweight/metabolism , Phenylephrine/pharmacology , Phenylephrine/metabolism , Serotonin/pharmacology , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL