Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Pollut ; 314: 120230, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36155227

ABSTRACT

Anthropogenic pollution is considered one of the main threats to the marine environment, and there is an imperious need to assess its potential impact on ecologically and economically relevant species. This study characterises plastic ingestion and tissue levels of potentially toxic metallic elements in Nephrops norvegicus and their simultaneous levels in abiotic compartments from three locations of the Catalan coast (NW Mediterranean Sea). A multidisciplinary assessment of the health condition of N. norvegicus through condition indices, enzymatic biomarkers and histological techniques is provided, and its relationship with anthropogenic pollutant levels explored. Plastic fibres were commonly found in stomachs of N. norvegicus (85% of the individuals), with higher abundances (13 ± 21 fibres · ind-1) in specimens captured close to Barcelona. The presence of long synthetic fibres in near-bottom waters, as well as the mirroring trends in abundance among locations for water and ingested plastics, suggest that uptake from water may be occurring potentially through suspension feeding. The spatial variability in the levels of metallic elements in N. norvegicus was poorly correlated to the variability in sediments. In any case, present levels in abdominal muscle are considered safe for human consumption. Levels of ingested plastics only showed significant, yet weak, correlations with glutathione S-transferase and catalase activities. However, no other health parameter analysed showed any trend potentially associated to anthropogenic pollutant levels. Neither the condition indices nor the histopathological assessment evidenced any signs of pathologic conditions affecting N. norvegicus. Thus, it was concluded that presently there is no evidence of a negative impact of the studied pollutants on the health condition of N. norvegicus in the studied grounds.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Biomarkers , Catalase , Environmental Monitoring/methods , Environmental Pollutants/analysis , Glutathione Transferase , Mediterranean Sea , Nephropidae , Plastics , Water/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 841: 156539, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35688235

ABSTRACT

The European anchovy (Engraulis encrasicolus) is a small pelagic fish with an outstanding commercial value supporting important fisheries and is a key component of pelagic ecosystems in the Mediterranean Sea. Progressive reductions in the population size of this species has been observed in the Mediterranean Sea during recent decades, accompanied by a decline in the body condition, as well as the size/age of maturation. Nonetheless, the health status has not been yet assessed using a holistic approach. Herein, we analyse the health status of the European anchovy, integrating distinct indicators from fish condition, enzymatic biomarkers, presence of tissue alterations, and parasite descriptors. In addition, we analyse the presence of anthropogenic items (AIs) in the digestive tract of fish and their potential impact on health status. Additionally, we assess the differences between current AIs values and those recorded over 12 years ago. None of the health indicators studied provided evidence of relevant pathologic conditions affecting this fish species in the studied area. However, changes in the pattern of liver parenchyma were found. Compared with anchovy populations from other distribution areas, no zoonotic parasites were recorded in this study, demonstrating a reduced risks associated with foodborne transmission to humans. AIs, such as fibres and plastic particles, were found in the digestive tract of half of the fish analysed. A significant increase was detected in AIs prevalence between 2007 (40 %) and 2019 (70 %), alongside differences in the abundance and typology of the AIs, though this does not seem to have impacted fish health yet. Therefore, our work underscores the importance of implementing a regular program to monitor the health status of this key species to better understand population dynamics and their drivers.


Subject(s)
Ecosystem , Parasites , Animals , Fishes/parasitology , Food Safety , Health Status , Mediterranean Sea
3.
Sci Total Environ ; 733: 139336, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32422462

ABSTRACT

Microfibres are among the most prevalent type of microplastics in marine environments. Man-made fibres derived from cellulose are distributed worldwide, but are often confused with synthetic plastic fibres and consequently neglected. All these fibres may adversely affect aquatic organisms, but their levels and potential effects in wild fish remain unknown. We analysed anthropogenic fibre (AF) ingestion in the red mullet (Mullus barbatus), at both temporal and geographical scales, to assess potential effects of these fibres on fish health condition. AFs were present in 50% of fish digestive tracts, with a mean of 1.48 AFs per individual (SD = 1.98). In Barcelona, an increase of 46% in AF ingestion was observed in 2018 compared to 2007. AF ingestion also increases by 20% when Barcelona is compared to a less urban area (the town of Blanes). Visual characterization of fibres by typologies-corroborated by Raman spectroscopy-allowed classification and identification of 88% of AFs as cellulosic (57%), and synthetic polymers (PET) (31%). In all sampling stations, the only histopathological alterations were cysts of unknown etiology, and the most abundant parasites were nematodes. None of these alterations, parasite load, or other fish health indicators (condition indices) indicate an effect of AF ingestion.


Subject(s)
Perciformes , Smegmamorpha , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Mediterranean Sea , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL