Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 96(1): e20230064, 2024.
Article in English | MEDLINE | ID: mdl-38656054

ABSTRACT

In this work, we focus on obtaining insights of the performances of some well-known machine learning image classification techniques (k-NN, Support Vector Machine, randomized decision tree and one based on stochastic distances) for PolSAR (Polarimetric Synthetic Aperture Radar) imagery. We test the classifiers methods on a set of actual PolSAR data and provide some conclusions. The aim of this work is to show that suitable adapted standard machine learning methods offer excellent performances vs. computational complexity trade-off for PolSAR image classification. In this work, we evaluate well-known machine learning techniques for PolSAR (Polarimetric Synthetic Aperture Radar) image classification, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), randomized decision tree, and a method based on the Kullback-Leibler stochastic distance. Our experiments with real PolSAR data show that standard machine learning methods, when adapted appropriately, offer a favourable trade-off between performance and computational complexity. The KNN and SVM perform poorly on these data, likely due to their failure to account for the inherent speckle presence and properties of the studied reliefs. Overall, our findings highlight the potential of the Kullback-Leibler stochastic distance method for PolSAR image classification.


Subject(s)
Machine Learning , Support Vector Machine , Algorithms
2.
PLoS One ; 16(11): e0259266, 2021.
Article in English | MEDLINE | ID: mdl-34767560

ABSTRACT

Many machine learning procedures, including clustering analysis are often affected by missing values. This work aims to propose and evaluate a Kernel Fuzzy C-means clustering algorithm considering the kernelization of the metric with local adaptive distances (VKFCM-K-LP) under three types of strategies to deal with missing data. The first strategy, called Whole Data Strategy (WDS), performs clustering only on the complete part of the dataset, i.e. it discards all instances with missing data. The second approach uses the Partial Distance Strategy (PDS), in which partial distances are computed among all available resources and then re-scaled by the reciprocal of the proportion of observed values. The third technique, called Optimal Completion Strategy (OCS), computes missing values iteratively as auxiliary variables in the optimization of a suitable objective function. The clustering results were evaluated according to different metrics. The best performance of the clustering algorithm was achieved under the PDS and OCS strategies. Under the OCS approach, new datasets were derive and the missing values were estimated dynamically in the optimization process. The results of clustering under the OCS strategy also presented a superior performance when compared to the resulting clusters obtained by applying the VKFCM-K-LP algorithm on a version where missing values are previously imputed by the mean or the median of the observed values.


Subject(s)
Cluster Analysis , Fuzzy Logic , Algorithms , Data Collection
SELECTION OF CITATIONS
SEARCH DETAIL
...